Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Short definitions in constraint languages (2305.01984v2)

Published 3 May 2023 in cs.LO, math.LO, and math.RA

Abstract: A first-order formula is called primitive positive (pp) if it only admits the use of existential quantifiers and conjunction. Pp-formulas are a central concept in (fixed-template) constraint satisfaction since CSP($\Gamma$) can be viewed as the problem of deciding the primitive positive theory of $\Gamma$, and pp-definability captures gadget reductions between CSPs. An important class of tractable constraint languages $\Gamma$ is characterized by having few subpowers, that is, the number of $n$-ary relations pp-definable from $\Gamma$ is bounded by $2{p(n)}$ for some polynomial $p(n)$. In this paper we study a restriction of this property, stating that every pp-definable relation is definable by a pp-formula of polynomial length. We conjecture that the existence of such short definitions is actually equivalent to $\Gamma$ having few subpowers, and verify this conjecture for a large subclass that, in particular, includes all constraint languages on three-element domains. We furthermore discuss how our conjecture imposes an upper complexity bound of co-NP on the subpower membership problem of algebras with few subpowers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.