Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal Interventions-based Few-Shot Named Entity Recognition (2305.01914v1)

Published 3 May 2023 in cs.CL

Abstract: Few-shot named entity recognition (NER) systems aims at recognizing new classes of entities based on a few labeled samples. A significant challenge in the few-shot regime is prone to overfitting than the tasks with abundant samples. The heavy overfitting in few-shot learning is mainly led by spurious correlation caused by the few samples selection bias. To alleviate the problem of the spurious correlation in the few-shot NER, in this paper, we propose a causal intervention-based few-shot NER method. Based on the prototypical network, the method intervenes in the context and prototype via backdoor adjustment during training. In particular, intervening in the context of the one-shot scenario is very difficult, so we intervene in the prototype via incremental learning, which can also avoid catastrophic forgetting. Our experiments on different benchmarks show that our approach achieves new state-of-the-art results (achieving up to 29% absolute improvement and 12% on average for all tasks).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhen Yang (160 papers)
  2. Yongbin Liu (5 papers)
  3. Chunping Ouyang (2 papers)