Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MolKD: Distilling Cross-Modal Knowledge in Chemical Reactions for Molecular Property Prediction (2305.01912v1)

Published 3 May 2023 in cs.LG, cs.AI, and physics.chem-ph

Abstract: How to effectively represent molecules is a long-standing challenge for molecular property prediction and drug discovery. This paper studies this problem and proposes to incorporate chemical domain knowledge, specifically related to chemical reactions, for learning effective molecular representations. However, the inherent cross-modality property between chemical reactions and molecules presents a significant challenge to address. To this end, we introduce a novel method, namely MolKD, which Distills cross-modal Knowledge in chemical reactions to assist Molecular property prediction. Specifically, the reaction-to-molecule distillation model within MolKD transfers cross-modal knowledge from a pre-trained teacher network learning with one modality (i.e., reactions) into a student network learning with another modality (i.e., molecules). Moreover, MolKD learns effective molecular representations by incorporating reaction yields to measure transformation efficiency of the reactant-product pair when pre-training on reactions. Extensive experiments demonstrate that MolKD significantly outperforms various competitive baseline models, e.g., 2.1% absolute AUC-ROC gain on Tox21. Further investigations demonstrate that pre-trained molecular representations in MolKD can distinguish chemically reasonable molecular similarities, which enables molecular property prediction with high robustness and interpretability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Liang Zeng (31 papers)
  2. Lanqing Li (21 papers)
  3. Jian Li (667 papers)
Citations (3)