Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantitative recurrence and the shrinking target problem for overlapping iterated function systems

Published 2 May 2023 in math.DS and math.CA | (2305.01489v2)

Abstract: In this paper we study quantitative recurrence and the shrinking target problem for dynamical systems coming from overlapping iterated function systems. Such iterated function systems have the important property that a point often has several distinct choices of forward orbit. As is demonstrated in this paper, this non-uniqueness leads to different behaviour to that observed in the traditional setting where every point has a unique forward orbit. We prove several almost sure results on the Lebesgue measure of the set of points satisfying a given recurrence rate, and on the Lebesgue measure of the set of points returning to a shrinking target infinitely often. In certain cases, when the Lebesgue measure is zero, we also obtain Hausdorff dimension bounds. One interesting aspect of our approach is that it allows us to handle targets that are not simply balls, but may have a more exotic geometry.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.