Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autoencoders for discovering manifold dimension and coordinates in data from complex dynamical systems (2305.01090v3)

Published 1 May 2023 in cs.LG and nlin.CD

Abstract: While many phenomena in physics and engineering are formally high-dimensional, their long-time dynamics often live on a lower-dimensional manifold. The present work introduces an autoencoder framework that combines implicit regularization with internal linear layers and $L_2$ regularization (weight decay) to automatically estimate the underlying dimensionality of a data set, produce an orthogonal manifold coordinate system, and provide the mapping functions between the ambient space and manifold space, allowing for out-of-sample projections. We validate our framework's ability to estimate the manifold dimension for a series of datasets from dynamical systems of varying complexities and compare to other state-of-the-art estimators. We analyze the training dynamics of the network to glean insight into the mechanism of low-rank learning and find that collectively each of the implicit regularizing layers compound the low-rank representation and even self-correct during training. Analysis of gradient descent dynamics for this architecture in the linear case reveals the role of the internal linear layers in leading to faster decay of a "collective weight variable" incorporating all layers, and the role of weight decay in breaking degeneracies and thus driving convergence along directions in which no decay would occur in its absence. We show that this framework can be naturally extended for applications of state-space modeling and forecasting by generating a data-driven dynamic model of a spatiotemporally chaotic partial differential equation using only the manifold coordinates. Finally, we demonstrate that our framework is robust to hyperparameter choices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Eberhard Hopf. A mathematical example displaying features of turbulence. Communications on Pure and Applied Mathematics, 1(4):303 – 322, 1948-12. doi: 10.1002/cpa.3160010401.
  2. Roger Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York, NY, 1977.
  3. Sergey Zelik. Attractors. Then and now. arXiv, 2022. doi: 10.48550/arxiv.2208.12101.
  4. John M Lee. Introduction to Smooth Manifolds, volume 218 of Springer New York. Springer New York, 2012. ISBN 978-1-4419-9981-8. doi: 10.1007/978-1-4419-9982-5.
  5. Data-driven discovery of intrinsic dynamics. Nature Machine Intelligence, 4(12):1113–1120, 2022. doi: 10.1038/s42256-022-00575-4. URL https://doi.org/10.1038/s42256-022-00575-4.
  6. Hyperbolicity and the effective dimension of spatially extended dissipative systems. Phys. Rev. Lett., 102:074102, Feb 2009. doi: 10.1103/PhysRevLett.102.074102. URL https://link.aps.org/doi/10.1103/PhysRevLett.102.074102.
  7. Geometry of inertial manifolds probed via a Lyapunov projection method. Phys. Rev. Lett., 108:154101, Apr 2012. doi: 10.1103/PhysRevLett.108.154101. URL https://link.aps.org/doi/10.1103/PhysRevLett.108.154101.
  8. Estimating the dimension of an inertial manifold from unstable periodic orbits. Phys. Rev. Lett., 117:024101, Jul 2016. doi: 10.1103/PhysRevLett.117.024101. URL https://link.aps.org/doi/10.1103/PhysRevLett.117.024101.
  9. I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.
  10. Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2):262 – 286, 2004. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-29544445896&partnerID=40&md5=a6093fb8d832cd36df0ae6f12962cd04.
  11. Christopher Bishop. Bayesian PCA. In M. Kearns, S. Solla, and D. Cohn, editors, Advances in Neural Information Processing Systems, volume 11. MIT Press, 1998. URL https://proceedings.neurips.cc/paper/1998/file/c88d8d0a6097754525e02c2246d8d27f-Paper.pdf.
  12. Representation and separation of signals using nonlinear PCA type learning. Neural Networks, 7(1):113–127, 1994. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(94)90060-4. URL https://www.sciencedirect.com/science/article/pii/0893608094900604.
  13. Deep learning to discover and predict dynamics on an inertial manifold. Phys. Rev. E, 101:062209, Jun 2020. doi: 10.1103/PhysRevE.101.062209. URL https://link.aps.org/doi/10.1103/PhysRevE.101.062209.
  14. Data-driven reduced-order modeling of spatiotemporal chaos with neural ordinary differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(7), 07 2022. ISSN 1054-1500. doi: 10.1063/5.0069536. URL https://doi.org/10.1063/5.0069536. 073110.
  15. Multiscale simulations of complex systems by learning their effective dynamics. Nature Machine Intelligence, 4(4):359–366, 2022.
  16. Automated discovery of fundamental variables hidden in experimental data. Nature Computational Science, 2(7):433–442, 2022.
  17. Carlos E. Pérez De Jesús and Michael D. Graham. Data-driven low-dimensional dynamic model of Kolmogorov flow. Physical Review Fluids, 8(4):044402, 2023. doi: 10.1103/physrevfluids.8.044402.
  18. Dynamics of a data-driven low-dimensional model of turbulent minimal Couette flow. Journal of Fluid Mechanics, 973:A42, 2023. ISSN 0022-1120. doi: 10.1017/jfm.2023.720.
  19. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A, 45:3403–3411, Mar 1992. doi: 10.1103/PhysRevA.45.3403. URL https://link.aps.org/doi/10.1103/PhysRevA.45.3403.
  20. William Gilpin. Deep reconstruction of strange attractors from time series. In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
  21. Self-consistent learning of neural dynamical systems from noisy time series. IEEE Transactions on Emerging Topics in Computational Intelligence, 6(5):1103–1112, 2022. doi: 10.1109/TETCI.2022.3146332.
  22. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373–1396, 2003. doi: 10.1162/089976603321780317.
  23. Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/papers/v9/vandermaaten08a.html.
  24. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000. doi: 10.1126/science.290.5500.2319. URL https://www.science.org/doi/abs/10.1126/science.290.5500.2319.
  25. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290(5500):2323–2326, 2000. doi: 10.1126/science.290.5500.2323. URL http://www.sciencemag.org/cgi/content/abstract/290/5500/2323.
  26. Intrinsic dimension estimation: Advances and open problems. Information Sciences, 328:26–41, 2016. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.2015.08.029. URL https://www.sciencedirect.com/science/article/pii/S0020025515006179.
  27. Maximum likelihood estimation of intrinsic dimension. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems, volume 17. MIT Press, 2004. URL https://proceedings.neurips.cc/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf.
  28. Multiscale estimation of intrinsic dimensionality of data sets. volume FS-09-04, page 26 – 33, 2009. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954233466&partnerID=40&md5=c0e2e6d983a89149b4b58152bdebd291.
  29. Implicit regularization in matrix factorization. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/58191d2a914c6dae66371c9dcdc91b41-Paper.pdf.
  30. Implicit regularization in deep matrix factorization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/c0c783b5fc0d7d808f1d14a6e9c8280d-Paper.pdf.
  31. Implicit regularization in deep learning may not be explainable by norms. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 21174–21187. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/f21e255f89e0f258accbe4e984eef486-Paper.pdf.
  32. Implicit rank-minimizing autoencoder. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 14736–14746. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/a9078e8653368c9c291ae2f8b74012e7-Paper.pdf.
  33. Neural networks efficiently learn low-dimensional representations with SGD. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=6taykzqcPD.
  34. Decoupled weight decay regularization. In International Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.
  35. Edward N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):130 – 141, 1963. doi: https://doi.org/10.1175/1520-0469(1963)020¡0130:DNF¿2.0.CO;2. URL https://journals.ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml.
  36. Hyperbolic decoupling of tangent space and effective dimension of dissipative systems. Phys. Rev. E, 84:046214, Oct 2011. doi: 10.1103/PhysRevE.84.046214. URL https://link.aps.org/doi/10.1103/PhysRevE.84.046214.
  37. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Proceedings of the National Academy of Sciences, 116:22445–22451, Oct 2019. doi: 10.1073/pnas.1906995116. URL https://www.pnas.org/doi/10.1073/pnas.1906995116.
  38. Adaptive learning of effective dynamics for online modeling of complex systems. Computer Methods in Applied Mechanics and Engineering, 415:116204, 2023. ISSN 0045-7825. doi: 10.1016/j.cma.2023.116204.
  39. Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows. Annual Review of Fluid Mechanics, 50(1):535–561, 2018. ISSN 0066-4189. doi: 10.1146/annurev-fluid-122316-045241.
  40. Neural ordinary differential equations. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 6572–6583, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html.
  41. Scattering-Informed Microstructure Prediction during Lagrangian Evolution (SIMPLE)—a data-driven framework for modeling complex fluids in flow. Rheologica Acta, pages 1–18, 2023. ISSN 0035-4511. doi: 10.1007/s00397-023-01412-0.
  42. Michael D Graham and IG Kevrekidis. Alternative approaches to the Karhunen-Loeve decomposition for model reduction and data analysis. Computers & Chemical Engineering, 20(5):495 506, 01 1996. URL http://apps.isiknowledge.com/InboundService.do?product=WOS&action=retrieve&SrcApp=Papers&UT=A1996TX93400003&SID=3D86LPg8K73gPF3Aman&SrcAuth=mekentosj&mode=FullRecord&customersID=mekentosj&DestFail=http%3A%2F%2Faccess.isiproducts.com%2Fcustom_images%2Fwok_failed_auth.html.
  43. E. J. Hinch. Perturbation Methods. Cambridge Texts in Applied Mathematics. Cambridge University Press, 1991. ISBN 0-521-37897-4.
Citations (7)

Summary

We haven't generated a summary for this paper yet.