Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Expressivity of Classical and Quantum Neural Networks on Entanglement Entropy (2305.00997v1)

Published 1 May 2023 in hep-th, physics.comp-ph, and quant-ph

Abstract: Analytically continuing the von Neumann entropy from R\'enyi entropies is a challenging task in quantum field theory. While the $n$-th R\'enyi entropy can be computed using the replica method in the path integral representation of quantum field theory, the analytic continuation can only be achieved for some simple systems on a case-by-case basis. In this work, we propose a general framework to tackle this problem using classical and quantum neural networks with supervised learning. We begin by studying several examples with known von Neumann entropy, where the input data is generated by representing $\text{Tr} \rho_An$ with a generating function. We adopt KerasTuner to determine the optimal network architecture and hyperparameters with limited data. In addition, we frame a similar problem in terms of quantum machine learning models, where the expressivity of the quantum models for the entanglement entropy as a partial Fourier series is established. Our proposed methods can accurately predict the von Neumann and R\'enyi entropies numerically, highlighting the potential of deep learning techniques for solving problems in quantum information theory.

Summary

We haven't generated a summary for this paper yet.