Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Ensembles to Improve Uncertainty Quantification of Statistical Downscaling Models under Climate Change Conditions (2305.00975v1)

Published 27 Apr 2023 in cs.LG and physics.ao-ph

Abstract: Recently, deep learning has emerged as a promising tool for statistical downscaling, the set of methods for generating high-resolution climate fields from coarse low-resolution variables. Nevertheless, their ability to generalize to climate change conditions remains questionable, mainly due to the stationarity assumption. We propose deep ensembles as a simple method to improve the uncertainty quantification of statistical downscaling models. By better capturing uncertainty, statistical downscaling models allow for superior planning against extreme weather events, a source of various negative social and economic impacts. Since no observational future data exists, we rely on a pseudo reality experiment to assess the suitability of deep ensembles for quantifying the uncertainty of climate change projections. Deep ensembles allow for a better risk assessment, highly demanded by sectoral applications to tackle climate change.

Summary

We haven't generated a summary for this paper yet.