Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Early Detection of Alzheimer's Disease using Bottleneck Transformers (2305.00923v1)

Published 1 May 2023 in eess.IV and cs.CV

Abstract: Early detection of Alzheimer's Disease (AD) and its prodromal state, Mild Cognitive Impairment (MCI), is crucial for providing suitable treatment and preventing the disease from progressing. It can also aid researchers and clinicians to identify early biomarkers and minister new treatments that have been a subject of extensive research. The application of deep learning techniques on structural Magnetic Resonance Imaging (MRI) has shown promising results in diagnosing the disease. In this research, we intend to introduce a novel approach of using an ensemble of the self-attention-based Bottleneck Transformers with a sharpness aware minimizer for early detection of Alzheimer's Disease. The proposed approach has been tested on the widely accepted ADNI dataset and evaluated using accuracy, precision, recall, F1 score, and ROC-AUC score as the performance metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Arunima Jaiswal (1 paper)
  2. Ananya Sadana (2 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.