Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Global Attention Network with Memory for Fake News Detection (2305.00456v2)

Published 30 Apr 2023 in cs.CY

Abstract: With the proliferation of social media, the detection of fake news has become a critical issue that poses a significant threat to society. The dissemination of fake information can lead to social harm and damage the credibility of information. To address this issue, deep learning has emerged as a promising approach, especially with the development of NLP. This study addresses the problem of detecting fake news on social media, which poses a significant challenge to society. This study proposes a new approach named GANM for fake news detection that employs NLP techniques to encode nodes for news context and user content and uses three graph convolutional networks to extract features and aggregate users' endogenous and exogenous information. The GANM employs a unique global attention mechanism with memory to learn the structural homogeneity of news dissemination networks. The approach achieves good results on a real dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Qian Chang (2 papers)
  2. Xia Lia (1 paper)
  3. Patrick S. W. Fong (1 paper)