Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Large Language Models to Generate JUnit Tests: An Empirical Study (2305.00418v4)

Published 30 Apr 2023 in cs.SE and cs.LG

Abstract: A code generation model generates code by taking a prompt from a code comment, existing code, or a combination of both. Although code generation models (e.g., GitHub Copilot) are increasingly being adopted in practice, it is unclear whether they can successfully be used for unit test generation without fine-tuning for a strongly typed language like Java. To fill this gap, we investigated how well three models (Codex, GPT-3.5-Turbo, and StarCoder) can generate unit tests. We used two benchmarks (HumanEval and Evosuite SF110) to investigate the effect of context generation on the unit test generation process. We evaluated the models based on compilation rates, test correctness, test coverage, and test smells. We found that the Codex model achieved above 80% coverage for the HumanEval dataset, but no model had more than 2% coverage for the EvoSuite SF110 benchmark. The generated tests also suffered from test smells, such as Duplicated Asserts and Empty Tests.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
Citations (30)
X Twitter Logo Streamline Icon: https://streamlinehq.com