Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformer-based Sequence Labeling for Audio Classification based on MFCCs (2305.00417v2)

Published 30 Apr 2023 in cs.SD, cs.CV, and eess.AS

Abstract: Audio classification is vital in areas such as speech and music recognition. Feature extraction from the audio signal, such as Mel-Spectrograms and MFCCs, is a critical step in audio classification. These features are transformed into spectrograms for classification. Researchers have explored various techniques, including traditional machine and deep learning methods to classify spectrograms, but these can be computationally expensive. To simplify this process, a more straightforward approach inspired by sequence classification in NLP can be used. This paper proposes a Transformer-encoder-based model for audio classification using MFCCs. The model was benchmarked against the ESC-50, Speech Commands v0.02 and UrbanSound8k datasets and has shown strong performance, with the highest accuracy of 95.2% obtained upon training the model on the UrbanSound8k dataset. The model consisted of a mere 127,544 total parameters, making it light-weight yet highly efficient at the audio classification task.

Summary

We haven't generated a summary for this paper yet.