Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Port-Hamiltonian formulations of the incompressible Euler equations with a free surface (2305.00377v1)

Published 30 Apr 2023 in math.AP and physics.flu-dyn

Abstract: In this paper, we present port-Hamiltonian formulations of the incompressible Euler equations with a free surface governed by surface tension and gravity forces, modelling e.g. capillary and gravity waves and the evolution of droplets in air. Three sets of variables are considered, namely $(v,\Sigma)$, $(\eta,\phi_{\partial},\Sigma)$ and $(\omega,\phi_{\partial},\Sigma)$, with $v$ the velocity, $\eta$ the solenoidal velocity, $\phi_{\partial}$ a potential, $\omega$ the vorticity, and $\Sigma$ the free surface, resulting in the incompressible Euler equations in primitive variables and the vorticity equation. First, the Hamiltonian formulation for the incompressible Euler equations in a domain with a free surface combined with a fixed boundary surface with a homogeneous boundary condition will be derived in the proper Sobolev spaces of differential forms. Next, these results will be extended to port-Hamiltonian formulations allowing inhomogeneous boundary conditions and a non-zero energy flow through the boundaries. Our main results are the construction and proof of Dirac structures in suitable Sobolev spaces of differential forms for each variable set, which provides the core of any port-Hamiltonian formulation. Finally, it is proven that the state dependent Dirac structures are related to Poisson brackets that are linear, skew-symmetric and satisfy the Jacobi identity.

Summary

We haven't generated a summary for this paper yet.