Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The FAIRy Tale of Genetic Algorithms (2305.00238v1)

Published 29 Apr 2023 in cs.NE and cs.LG

Abstract: Genetic Algorithm (GA) is a popular meta-heuristic evolutionary algorithm that uses stochastic operators to find optimal solution and has proved its effectiveness in solving many complex optimization problems (such as classification, optimization, and scheduling). However, despite its performance, popularity and simplicity, not much attention has been paid towards reproducibility and reusability of GA. In this paper, we have extended Findable, Accessible, Interoperable and Reusable (FAIR) data principles to enable the reproducibility and reusability of algorithms. We have chosen GA as a usecase to the demonstrate the applicability of the proposed principles. Also we have presented an overview of methodological developments and variants of GA that makes it challenging to reproduce or even find the right source. Additionally, to enable FAIR algorithms, we propose a vocabulary (i.e. $evo$) using light weight RDF format, facilitating the reproducibility. Given the stochastic nature of GAs, this work can be extended to numerous Optimization and machine learning algorithms/methods.

Summary

We haven't generated a summary for this paper yet.