Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-Guided Graph Neural Networks for Real-time AC/DC Power Flow Analysis (2305.00216v1)

Published 29 Apr 2023 in eess.SY, cs.LG, and cs.SY

Abstract: The increasing scale of alternating current and direct current (AC/DC) hybrid systems necessitates a faster power flow analysis tool than ever. This letter thus proposes a specific physics-guided graph neural network (PG-GNN). The tailored graph modelling of AC and DC grids is firstly advanced to enhance the topology adaptability of the PG-GNN. To eschew unreliable experience emulation from data, AC/DC physics are embedded in the PG-GNN using duality. Augmented Lagrangian method-based learning scheme is then presented to help the PG-GNN better learn nonconvex patterns in an unsupervised label-free manner. Multi-PG-GNN is finally conducted to master varied DC control modes. Case study shows that, relative to the other 7 data-driven rivals, only the proposed method matches the performance of the model-based benchmark, also beats it in computational efficiency beyond 10 times.

Summary

We haven't generated a summary for this paper yet.