Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Prediction: On-street Parking Recommendation using Heterogeneous Graph-based List-wise Ranking (2305.00162v2)

Published 29 Apr 2023 in cs.LG and cs.AI

Abstract: To provide real-time parking information, existing studies focus on predicting parking availability, which seems an indirect approach to saving drivers' cruising time. In this paper, we first time propose an on-street parking recommendation (OPR) task to directly recommend a parking space for a driver. To this end, a learn-to-rank (LTR) based OPR model called OPR-LTR is built. Specifically, parking recommendation is closely related to the "turnover events" (state switching between occupied and vacant) of each parking space, and hence we design a highly efficient heterogeneous graph called ESGraph to represent historical and real-time meters' turnover events as well as geographical relations; afterward, a convolution-based event-then-graph network is used to aggregate and update representations of the heterogeneous graph. A ranking model is further utilized to learn a score function that helps recommend a list of ranked parking spots for a specific on-street parking query. The method is verified using the on-street parking meter data in Hong Kong and San Francisco. By comparing with the other two types of methods: prediction-only and prediction-then-recommendation, the proposed direct-recommendation method achieves satisfactory performance in different metrics. Extensive experiments also demonstrate that the proposed ESGraph and the recommendation model are more efficient in terms of computational efficiency as well as saving drivers' on-street parking time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. INRIX, “Searching for parking costs americans $73 billion a year,” 2017. [Online]. Available: http://inrix.com/press-releases/parking-pain-us/
  2. M. Schneble and G. Kauermann, “Statistical modeling of on-street parking lot occupancy in smart cities,” arXiv preprint arXiv:2106.06197, 2021.
  3. W. Zheng, R. Liao, and J. Zeng, “An analytical model for crowdsensing on-street parking spaces,” in 2019 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC).   IEEE, 2019, pp. 56–61.
  4. J. Cherian, J. Luo, H. Guo, S.-S. Ho, and R. Wisbrun, “Parkgauge: Gauging the occupancy of parking garages with crowdsensed parking characteristics,” in 2016 17th IEEE International Conference on Mobile Data Management (MDM), vol. 1.   IEEE, 2016, pp. 92–101.
  5. X. Chen, E. Santos-Neto, and M. Ripeanu, “Crowdsourcing for on-street smart parking,” in Proceedings of the second ACM international symposium on Design and analysis of intelligent vehicular networks and applications, 2012, pp. 1–8.
  6. F. Wu and W. Ma, “Clustering analysis of the spatio-temporal on-street parking occupancy data: A case study in hong kong,” Sustainability, vol. 14, no. 13, p. 7957, 2022.
  7. T. Rajabioun and P. A. Ioannou, “On-street and off-street parking availability prediction using multivariate spatiotemporal models,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp. 2913–2924, 2015.
  8. D. Anand, A. Singh, K. Alsubhi, N. Goyal, A. Abdrabou, A. Vidyarthi, and J. J. P. C. Rodrigues, “A smart cloud and iovt-based kernel adaptive filtering framework for parking prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 3, pp. 2737–2745, 2023.
  9. J. Li, H. Qu, and L. You, “An integrated approach for the near real-time parking occupancy prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 4, pp. 3769–3778, 2023.
  10. B. Assemi, A. Paz, and D. Baker, “On-street parking occupancy inference based on payment transactions,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 10 680–10 691, 2022.
  11. J. Liu, G. P. Ong, and X. Chen, “Graphsage-based traffic speed forecasting for segment network with sparse data,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 3, pp. 1755–1766, 2020.
  12. D. Zhao, C. Ju, G. Zhu, J. Ning, D. Luo, D. Zhang, and H. Ma, “Mepark: Using meters as sensors for citywide on-street parking availability prediction,” Trans. Intell. Transport. Sys., vol. 23, no. 7, p. 7244–7257, jul 2022. [Online]. Available: https://doi.org/10.1109/TITS.2021.3067675
  13. F. Rodrigues and F. C. Pereira, “Beyond expectation: Deep joint mean and quantile regression for spatiotemporal problems,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 12, pp. 5377–5389, 2020.
  14. K. S. Liu, J. Gao, X. Wu, and S. Lin, “On-street parking guidance with real-time sensing data for smart cities,” in 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON).   IEEE, 2018, pp. 1–9.
  15. D. Zhao, Z. Cao, C. Ju, D. Zhang, and H. Ma, “D2park: Diversified demand-aware on-street parking guidance,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 4, pp. 1–25, 2020.
  16. H. A. E. Al-Jameel and R. R. Muzhar, “Characteristics of on-street parking on-street parking in al-najaf city urban streets,” Transportation Research Procedia, vol. 45, pp. 612–620, 2020.
  17. Z. Pu, Z. Li, J. Ash, W. Zhu, and Y. Wang, “Evaluation of spatial heterogeneity in the sensitivity of on-street parking occupancy to price change,” Transportation Research Part C: Emerging Technologies, vol. 77, pp. 67–79, 2017.
  18. R. Ke, Y. Zhuang, Z. Pu, and Y. Wang, “A smart, efficient, and reliable parking surveillance system with edge artificial intelligence on iot devices,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 4962–4974, 2021.
  19. J. Gao and B. Ribeiro, “On the equivalence between temporal and static equivariant graph representations,” in International Conference on Machine Learning.   PMLR, 2022, pp. 7052–7076.
  20. R. Bian, Y. S. Koh, G. Dobbie, and A. Divoli, “Network embedding and change modeling in dynamic heterogeneous networks,” ser. SIGIR’19.   New York, NY, USA: Association for Computing Machinery, 2019, p. 861–864.
  21. S. Liu, I. Ounis, C. Macdonald, and Z. Meng, “A heterogeneous graph neural model for cold-start recommendation,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 2029–2032.
  22. T. Zhao, C. Yang, Y. Li, Q. Gan, Z. Wang, F. Liang, H. Zhao, Y. Shao, X. Wang, and C. Shi, “Space4hgnn: a novel, modularized and reproducible platform to evaluate heterogeneous graph neural network,” in Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 2776–2789.
  23. S. Yang, W. Ma, X. Pi, and S. Qian, “A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources,” Transportation Research Part C: Emerging Technologies, vol. 107, pp. 248–265, 2019.
  24. W. Zhang, H. Liu, Y. Liu, J. Zhou, and H. Xiong, “Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, 2020, pp. 1186–1193.
  25. Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data-driven traffic forecasting,” arXiv preprint arXiv:1707.01926, 2017.
  26. Y. Zhao, Y. Lin, H. Wen, T. Wei, X. Jin, and H. Wan, “Spatial-temporal position-aware graph convolution networks for traffic flow forecasting,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–17, 2022.
  27. T.-Y. Liu, “Learning to rank for information retrieval,” in Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, ser. SIGIR ’10.   New York, NY, USA: Association for Computing Machinery, 2010, p. 904. [Online]. Available: https://doi.org/10.1145/1835449.1835676
  28. Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, “Learning to rank: from pairwise approach to listwise approach,” in Proceedings of the 24th International Conference on Machine learning, 2007, pp. 129–136.
  29. F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li, “Listwise approach to learning to rank: theory and algorithm,” in Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1192–1199.
  30. S. Keshvari, F. Ensan, and H. S. Yazdi, “Listmap: Listwise learning to rank as maximum a posteriori estimation,” Information Processing & Management, vol. 59, no. 4, p. 102962, 2022.
  31. S. Datta, S. MacAvaney, D. Ganguly, and D. Greene, “A’pointwise-query, listwise-document’based query performance prediction approach,” in Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 2148–2153.
  32. Y. Wang, Z. Tao, and Y. Fang, “A meta-learning approach to fair ranking,” in Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 2539–2544.
  33. I. Bello, S. Kulkarni, S. Jain, C. Boutilier, E. Chi, E. Eban, X. Luo, A. Mackey, and O. Meshi, “Seq2slate: Re-ranking and slate optimization with rnns,” arXiv preprint arXiv:1810.02019, 2018.
  34. T. Qin, T.-Y. Liu, and H. Li, “A general approximation framework for direct optimization of information retrieval measures,” Information Retrieval, vol. 13, no. 4, pp. 375–397, 2010.
  35. P. Pobrotyn and R. Białobrzeski, “Neuralndcg: Direct optimisation of a ranking metric via differentiable relaxation of sorting,” arXiv preprint arXiv:2102.07831, 2021.
  36. H. Zhuang, X. Wang, M. Bendersky, A. Grushetsky, Y. Wu, P. Mitrichev, E. Sterling, N. Bell, W. Ravina, and H. Qian, “Interpretable ranking with generalized additive models,” in Proceedings of the 14th ACM International Conference on Web Search and Data Mining, 2021, pp. 499–507.
  37. R. Diestel, “Graph theory 3rd ed,” Graduate texts in mathematics, vol. 173, no. 33, p. 12, 2005.
  38. R. E. Tarjan, “Amortized computational complexity,” SIAM Journal on Algebraic Discrete Methods, vol. 6, no. 2, pp. 306–318, 1985.
  39. Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling with gated convolutional networks,” in International Conference on Machine Learning.   PMLR, 2017, pp. 933–941.
  40. V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson, “Benchmarking graph neural networks,” arXiv preprint arXiv:2003.00982, 2020.
  41. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
  42. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
  43. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2961–2969.
  44. P. Pobrotyn, T. Bartczak, M. Synowiec, R. Białobrzeski, and J. Bojar, “Context-aware learning to rank with self-attention,” arXiv preprint arXiv:2005.10084, 2020.
  45. Q. Ai, X. Wang, S. Bruch, N. Golbandi, M. Bendersky, and M. Najork, “Learning groupwise multivariate scoring functions using deep neural networks,” in Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval, 2019, pp. 85–92.
  46. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.
  47. L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li, “T-gcn: A temporal graph convolutional network for traffic prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 9, pp. 3848–3858, 2019.
  48. J. Qi, Z. Zhao, E. Tanin, T. Cui, N. Nassir, and M. Sarvi, “A graph and attentive multi-path convolutional network for traffic prediction,” IEEE Transactions on Knowledge and Data Engineering, 2022.
  49. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

Summary

We haven't generated a summary for this paper yet.