Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wearing face mask detection using deep learning through COVID-19 pandemic (2305.00068v1)

Published 28 Apr 2023 in cs.CV, cs.AI, and cs.LG

Abstract: During the COVID-19 pandemic, wearing a face mask has been known to be an effective way to prevent the spread of COVID-19. In lots of monitoring tasks, humans have been replaced with computers thanks to the outstanding performance of the deep learning models. Monitoring the wearing of a face mask is another task that can be done by deep learning models with acceptable accuracy. The main challenge of this task is the limited amount of data because of the quarantine. In this paper, we did an investigation on the capability of three state-of-the-art object detection neural networks on face mask detection for real-time applications. As mentioned, here are three models used, Single Shot Detector (SSD), two versions of You Only Look Once (YOLO) i.e., YOLOv4-tiny, and YOLOv4-tiny-3l from which the best was selected. In the proposed method, according to the performance of different models, the best model that can be suitable for use in real-world and mobile device applications in comparison to other recent studies was the YOLOv4-tiny model, with 85.31% and 50.66 for mean Average Precision (mAP) and Frames Per Second (FPS), respectively. These acceptable values were achieved using two datasets with only 1531 images in three separate classes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Javad Khoramdel (2 papers)
  2. Soheila Hatami (3 papers)
  3. Majid Sadedel (4 papers)
Citations (2)