Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Discovery of 3D Hierarchical Structure with Generative Diffusion Features (2305.00067v2)

Published 28 Apr 2023 in cs.CV

Abstract: Inspired by recent findings that generative diffusion models learn semantically meaningful representations, we use them to discover the intrinsic hierarchical structure in biomedical 3D images using unsupervised segmentation. We show that features of diffusion models from different stages of a U-Net-based ladder-like architecture capture different hierarchy levels in 3D biomedical images. We design three losses to train a predictive unsupervised segmentation network that encourages the decomposition of 3D volumes into meaningful nested subvolumes that represent a hierarchy. First, we pretrain 3D diffusion models and use the consistency of their features across subvolumes. Second, we use the visual consistency between subvolumes. Third, we use the invariance to photometric augmentations as a regularizer. Our models achieve better performance than prior unsupervised structure discovery approaches on challenging biologically-inspired synthetic datasets and on a real-world brain tumor MRI dataset.

Citations (3)

Summary

We haven't generated a summary for this paper yet.