Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ScatterFormer: Locally-Invariant Scattering Transformer for Patient-Independent Multispectral Detection of Epileptiform Discharges (2304.14919v1)

Published 26 Apr 2023 in eess.SP and cs.LG

Abstract: Patient-independent detection of epileptic activities based on visual spectral representation of continuous EEG (cEEG) has been widely used for diagnosing epilepsy. However, precise detection remains a considerable challenge due to subtle variabilities across subjects, channels and time points. Thus, capturing fine-grained, discriminative features of EEG patterns, which is associated with high-frequency textural information, is yet to be resolved. In this work, we propose Scattering Transformer (ScatterFormer), an invariant scattering transform-based hierarchical Transformer that specifically pays attention to subtle features. In particular, the disentangled frequency-aware attention (FAA) enables the Transformer to capture clinically informative high-frequency components, offering a novel clinical explainability based on visual encoding of multichannel EEG signals. Evaluations on two distinct tasks of epileptiform detection demonstrate the effectiveness our method. Our proposed model achieves median AUCROC and accuracy of 98.14%, 96.39% in patients with Rolandic epilepsy. On a neonatal seizure detection benchmark, it outperforms the state-of-the-art by 9% in terms of average AUCROC.

Citations (2)

Summary

We haven't generated a summary for this paper yet.