Structural Parameterizations for Two Bounded Degree Problems Revisited (2304.14724v2)
Abstract: We revisit two well-studied problems, Bounded Degree Vertex Deletion and Defective Coloring, where the input is a graph $G$ and a target degree $\Delta$ and we are asked either to edit or partition the graph so that the maximum degree becomes bounded by $\Delta$. Both are known to be parameterized intractable for treewidth. We revisit the parameterization by treewidth, as well as several related parameters and present a more fine-grained picture of the complexity of both problems. Both admit straightforward DP algorithms with table sizes $(\Delta+2)\mathrm{tw}$ and $(\chi_\mathrm{d}(\Delta+1)){\mathrm{tw}}$ respectively, where tw is the input graph's treewidth and $\chi_\mathrm{d}$ the number of available colors. We show that both algorithms are optimal under SETH, even if we replace treewidth by pathwidth. Along the way, we also obtain an algorithm for Defective Coloring with complexity quasi-linear in the table size, thus settling the complexity of both problems for these parameters. We then consider the more restricted parameter tree-depth, and bridge the gap left by known lower bounds, by showing that neither problem can be solved in time $n{o(\mathrm{td})}$ under ETH. In order to do so, we employ a recursive low tree-depth construction that may be of independent interest. Finally, we show that for both problems, an $\mathrm{vc}{o(\mathrm{vc})}$ algorithm would violate ETH, thus already known algorithms are optimal. Our proof relies on a new application of the technique of $d$-detecting families introduced by Bonamy et al. Our results, although mostly negative in nature, paint a clear picture regarding the complexity of both problems in the landscape of parameterized complexity, since in all cases we provide essentially matching upper and lower bounds.
- On a generalization of chromatic number. Congressus Numerantium, 47:33–48, 1985.
- Vertex-coloring with defects. J. Graph Algorithms Appl., 21(3):313–340, 2017. doi:10.7155/jgaa.00418.
- Dan Archdeacon. A note on defective colorings of graphs in surfaces. J. Graph Theory, 11(4):517–519, 1987. doi:10.1002/jgt.3190110408.
- Clique relaxations in social network analysis: The maximum k-plex problem. Oper. Res., 59(1):133–142, 2011. doi:10.1287/opre.1100.0851.
- Parameterized (approximate) defective coloring. SIAM J. Discret. Math., 34(2):1084–1106, 2020. doi:10.1137/18M1223666.
- Defective coloring on classes of perfect graphs. Discret. Math. Theor. Comput. Sci., 24, 2022. doi:10.46298/dmtcs.4926.
- On making a distinguished vertex of minimum degree by vertex deletion. Algorithmica, 68(3):715–738, 2014. doi:10.1007/s00453-012-9695-6.
- On bounded-degree vertex deletion parameterized by treewidth. Discret. Appl. Math., 160(1-2):53–60, 2012. doi:10.1016/j.dam.2011.08.013.
- Parameterized complexity of candidate control in elections and related digraph problems. Theor. Comput. Sci., 410(52):5425–5442, 2009. doi:10.1016/j.tcs.2009.05.029.
- Tight lower bounds for the complexity of multicoloring. ACM Trans. Comput. Theory, 11(3):13:1–13:19, 2019. doi:10.1145/3313906.
- Optimal dynamic program for r-domination problems over tree decompositions. In 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, volume 63 of LIPIcs, pages 8:1–8:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.IPEC.2016.8.
- Improper coloring of graphs on surfaces. J. Graph Theory, 91(1):16–34, 2019. doi:10.1002/jgt.22418.
- Defective colorings of graphs in surfaces: Partitions into subgraphs of bounded valency. J. Graph Theory, 10(2):187–195, 1986. doi:10.1002/jgt.3190100207.
- Parameterized Algorithms. Springer, 2015. doi:10.1007/978-3-319-21275-3.
- Fast hamiltonicity checking via bases of perfect matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.
- Solving connectivity problems parameterized by treewidth in single exponential time. ACM Trans. Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/3506707.
- Exact and approximate bandwidth. Theor. Comput. Sci., 411(40-42):3701–3713, 2010. doi:10.1016/j.tcs.2010.06.018.
- Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer, 2017. doi:10.1007/978-3-662-53622-3.
- New algorithms for mixed dominating set. Discret. Math. Theor. Comput. Sci., 23(1), 2021. doi:10.46298/dmtcs.6824.
- Upper dominating set: Tight algorithms for pathwidth and sub-exponential approximation. Theor. Comput. Sci., 923:271–291, 2022. doi:10.1016/j.tcs.2022.05.013.
- A generalization of nemhauser and trotter’s local optimization theorem. J. Comput. Syst. Sci., 77(6):1141–1158, 2011. doi:10.1016/j.jcss.2010.12.001.
- Tight complexity bounds for counting generalized dominating sets in bounded-treewidth graphs. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, pages 3664–3683. SIAM, 2023. doi:10.1137/1.9781611977554.ch140.
- Counting list homomorphisms from graphs of bounded treewidth: Tight complexity bounds. ACM Trans. Algorithms, 20(2), 2024. doi:10.1145/3640814.
- Toshihiro Fujito. A unified approximation algorithm for node-deletion problems. Discret. Appl. Math., 86(2-3):213–231, 1998. doi:10.1016/S0166-218X(98)00035-3.
- Toshihiro Fujito. Approximating bounded degree deletion via matroid matching. In Algorithms and Complexity - 10th International Conference, CIAC 2017, volume 10236 of Lecture Notes in Computer Science, pages 234–246, 2017. doi:10.1007/978-3-319-57586-5\_20.
- The fine-grained complexity of graph homomorphism parameterized by clique-width. ACM Trans. Algorithms, 2024. doi:10.1145/3652514.
- On structural parameterizations of the bounded-degree vertex deletion problem. Algorithmica, 83(1):297–336, 2021. doi:10.1007/s00453-020-00758-8.
- Tight bounds for counting colorings and connected edge sets parameterized by cutwidth. In 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, volume 219 of LIPIcs, pages 36:1–36:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.36.
- Parameterized orientable deletion. Algorithmica, 82(7):1909–1938, 2020. doi:10.1007/s00453-020-00679-6.
- Improper coloring of unit disk graphs. Networks, 54(3):150–164, 2009. doi:10.1002/net.20318.
- Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph coloring problems. Discret. Appl. Math., 327:33–46, 2023. doi:10.1016/j.dam.2022.11.011.
- Structural parameters, tight bounds, and approximation for (k, r)-center. Discret. Appl. Math., 264:90–117, 2019. doi:10.1016/j.dam.2018.11.002.
- Structurally parameterized d-scattered set. Discret. Appl. Math., 308:168–186, 2022. doi:10.1016/j.dam.2020.03.052.
- Michael Lampis. Parameterized approximation schemes using graph widths. In Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, volume 8572 of Lecture Notes in Computer Science, pages 775–786. Springer, 2014. doi:10.1007/978-3-662-43948-7\_64.
- Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math., 34(3):1538–1558, 2020. doi:10.1137/19M1280326.
- Structural parameterizations for two bounded degree problems revisited. In 31st Annual European Symposium on Algorithms, ESA 2023, volume 274 of LIPIcs, pages 77:1–77:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ESA.2023.77.
- Bernt Lindström. On a combinatorial problem in number theory. Canadian Mathematical Bulletin, 8(4):477–490, 1965. doi:10.4153/CMB-1965-034-2.
- Known algorithms on graphs of bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018. doi:10.1145/3170442.
- Fpt-approximation for FPT problems. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 199–218. SIAM, 2021. doi:10.1137/1.9781611976465.14.
- Combinatorial algorithms for the maximum k-plex problem. J. Comb. Optim., 23(1):29–49, 2012. doi:10.1007/s10878-010-9338-2.
- Robert T. Moenck. Practical fast polynomial multiplication. In Proceedings of the third ACM Symposium on Symbolic and Algebraic Manipulation, SYMSAC 1976, pages 136–148. ACM, 1976. doi:10.1145/800205.806332.
- Exact combinatorial algorithms and experiments for finding maximum k-plexes. J. Comb. Optim., 24(3):347–373, 2012. doi:10.1007/s10878-011-9391-5.
- Fast fixed-parameter tractable algorithms for nontrivial generalizations of vertex cover. Discret. Appl. Math., 152(1-3):229–245, 2005. doi:10.1016/j.dam.2005.02.029.
- Fine-grained complexity of the graph homomorphism problem for bounded-treewidth graphs. SIAM J. Comput., 50(2):487–508, 2021. doi:10.1137/20M1320146.
- A new approach for approximating node deletion problems. Inf. Process. Lett., 88(5):231–236, 2003. doi:10.1016/j.ipl.2003.08.005.
- Parameterized algorithms for generalized domination. In Combinatorial Optimization and Applications, Second International Conference, COCOA 2008, volume 5165 of Lecture Notes in Computer Science, pages 116–126. Springer, 2008. doi:10.1007/978-3-540-85097-7\_11.
- Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pages 216–226. ACM, 1978. doi:10.1145/800133.804350.
- Mixed searching and proper-path-width. Theor. Comput. Sci., 137(2):253–268, 1995. doi:10.1016/0304-3975(94)00160-K.
- Craig A. Tovey. A simplified np-complete satisfiability problem. Discret. Appl. Math., 8(1):85–89, 1984. doi:10.1016/0166-218X(84)90081-7.
- Lower bounds for dynamic programming on planar graphs of bounded cutwidth. J. Graph Algorithms Appl., 24(3):461–482, 2020. doi:10.7155/jgaa.00542.
- Johan M. M. van Rooij. A generic convolution algorithm for join operations on tree decompositions. In Computer Science - Theory and Applications - 16th International Computer Science Symposium in Russia, CSR 2021, volume 12730 of Lecture Notes in Computer Science, pages 435–459. Springer, 2021. doi:10.1007/978-3-030-79416-3\_27.
- Mingyu Xiao. A parameterized algorithm for bounded-degree vertex deletion. In Computing and Combinatorics - 22nd International Conference, COCOON 2016, volume 9797 of Lecture Notes in Computer Science, pages 79–91. Springer, 2016. doi:10.1007/978-3-319-42634-1\_7.
- Mingyu Xiao. On a generalization of nemhauser and trotter’s local optimization theorem. J. Comput. Syst. Sci., 84:97–106, 2017. doi:10.1016/j.jcss.2016.08.003.