Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improve Video Representation with Temporal Adversarial Augmentation (2304.14601v2)

Published 28 Apr 2023 in cs.CV and cs.AI

Abstract: Recent works reveal that adversarial augmentation benefits the generalization of neural networks (NNs) if used in an appropriate manner. In this paper, we introduce Temporal Adversarial Augmentation (TA), a novel video augmentation technique that utilizes temporal attention. Unlike conventional adversarial augmentation, TA is specifically designed to shift the attention distributions of neural networks with respect to video clips by maximizing a temporal-related loss function. We demonstrate that TA will obtain diverse temporal views, which significantly affect the focus of neural networks. Training with these examples remedies the flaw of unbalanced temporal information perception and enhances the ability to defend against temporal shifts, ultimately leading to better generalization. To leverage TA, we propose Temporal Video Adversarial Fine-tuning (TAF) framework for improving video representations. TAF is a model-agnostic, generic, and interpretability-friendly training strategy. We evaluate TAF with four powerful models (TSM, GST, TAM, and TPN) over three challenging temporal-related benchmarks (Something-something V1&V2 and diving48). Experimental results demonstrate that TAF effectively improves the test accuracy of these models with notable margins without introducing additional parameters or computational costs. As a byproduct, TAF also improves the robustness under out-of-distribution (OOD) settings. Code is available at https://github.com/jinhaoduan/TAF.

Citations (2)

Summary

We haven't generated a summary for this paper yet.