Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Internal symmetry in Poincare gauge gravity (2304.14586v2)

Published 28 Apr 2023 in hep-th, gr-qc, math-ph, and math.MP

Abstract: We find a large internal symmetry within 4-dimensional Poincare gauge theory. In the Riemann-Cartan geometry of Poincare gauge theory the field equation and geodesics are invariant under projective transformation, just as in affine geometry. However, in the Riemann-Cartan case the torsion and nonmetricity tensors change. By generalizing the Riemann-Cartan geometry to allow both torsion and nonmetricity while maintaining local Lorentz symmetry the difference of the antisymmetric part of the nonmetricity Q and the torsion T is a projectively invariant linear combination $S = T - Q$ with the same symmetry as torsion. The structure equations may be written entirely in terms of S and the corresponding Riemann-Cartan curvature. The new description of the geometry has manifest projective and Lorentz symmetries, and vanishing nonmetricity. Torsion, S and Q lie in the vector space of vector-valued 2-forms. Within the extended geometry we define rotations with axis in the direction of S. These rotate both torsion and nonmetricity while leaving S invariant. In n dimensions and (p, q) signature this gives a large internal symmetry. The four dimensional case acquires SO(11,9) or Spin(11,9) internal symmetry, sufficient for the Standard Model. The most general action up to linearity in second derivatives of the solder form now includes combinations quadratic in torsion and nonmetricity, torsion-nonmetricity couplings, and the Einstein-Hilbert action. Imposing projective invariance reduces this to dependence on S and curvature alone. The new internal symmetry decouples from gravity in agreement with the Coleman-Mandula theorem.

Summary

We haven't generated a summary for this paper yet.