Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Environment for the Air Domain (LEAD) (2304.14423v1)

Published 27 Apr 2023 in cs.LG

Abstract: A substantial part of fighter pilot training is simulation-based and involves computer-generated forces controlled by predefined behavior models. The behavior models are typically manually created by eliciting knowledge from experienced pilots, which is a time-consuming process. Despite the work put in, the behavior models are often unsatisfactory due to their predictable nature and lack of adaptivity, forcing instructors to spend time manually monitoring and controlling them. Reinforcement and imitation learning pose as alternatives to handcrafted models. This paper presents the Learning Environment for the Air Domain (LEAD), a system for creating and integrating intelligent air combat behavior in military simulations. By incorporating the popular programming library and interface Gymnasium, LEAD allows users to apply readily available machine learning algorithms. Additionally, LEAD can communicate with third-party simulation software through distributed simulation protocols, which allows behavior models to be learned and employed using simulation systems of different fidelities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Andreas Strand (2 papers)
  2. Patrick Gorton (1 paper)
  3. Martin Asprusten (1 paper)
  4. Karsten Brathen (2 papers)
Citations (1)