Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking (2304.14394v3)

Published 27 Apr 2023 in cs.CV

Abstract: In this paper, we introduce a new sequence-to-sequence learning framework for RGB-based and multi-modal object tracking. First, we present SeqTrack for RGB-based tracking. It casts visual tracking as a sequence generation task, forecasting object bounding boxes in an autoregressive manner. This differs from previous trackers, which depend on the design of intricate head networks, such as classification and regression heads. SeqTrack employs a basic encoder-decoder transformer architecture. The encoder utilizes a bidirectional transformer for feature extraction, while the decoder generates bounding box sequences autoregressively using a causal transformer. The loss function is a plain cross-entropy. Second, we introduce SeqTrackv2, a unified sequence-to-sequence framework for multi-modal tracking tasks. Expanding upon SeqTrack, SeqTrackv2 integrates a unified interface for auxiliary modalities and a set of task-prompt tokens to specify the task. This enables it to manage multi-modal tracking tasks using a unified model and parameter set. This sequence learning paradigm not only simplifies the tracking framework, but also showcases superior performance across 14 challenging benchmarks spanning five single- and multi-modal tracking tasks. The code and models are available at https://github.com/chenxin-dlut/SeqTrackv2.

Citations (23)

Summary

We haven't generated a summary for this paper yet.