Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Audit Framework for Adopting AI-Nudging on Children (2304.14338v1)

Published 25 Apr 2023 in cs.CY and cs.AI

Abstract: This is an audit framework for AI-nudging. Unlike the static form of nudging usually discussed in the literature, we focus here on a type of nudging that uses large amounts of data to provide personalized, dynamic feedback and interfaces. We call this AI-nudging (Lanzing, 2019, p. 549; Yeung, 2017). The ultimate goal of the audit outlined here is to ensure that an AI system that uses nudges will maintain a level of moral inertia and neutrality by complying with the recommendations, requirements, or suggestions of the audit (in other words, the criteria of the audit). In the case of unintended negative consequences, the audit suggests risk mitigation mechanisms that can be put in place. In the case of unintended positive consequences, it suggests some reinforcement mechanisms. Sponsored by the IBM-Notre Dame Tech Ethics Lab

Summary

We haven't generated a summary for this paper yet.