Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Mutual Information In The Vicinity of Capacity-Achieving Input Distributions (2304.14219v5)

Published 27 Apr 2023 in cs.IT, math.IT, and quant-ph

Abstract: The mutual information is bounded from above by a decreasing affine function of the square of the distance between the input distribution and the set of all capacity-achieving input distributions $\Pi_{\mathcal{A}}$, on small enough neighborhoods of $\Pi_{\mathcal{A}}$, using an identity due to Tops{\o}e and the Pinsker's inequality, assuming that the input set of the channel is finite and the constraint set $\mathcal{A}$ is polyhedral, i.e., can be described by (possibly multiple but) finitely many linear constraints. Counterexamples demonstrating nonexistence of such a quadratic bound are provided for the case of infinitely many linear constraints and the case of infinite input sets. Using Taylor's theorem with the remainder term, rather than the Pinsker's inequality and invoking Moreau's decomposition theorem the exact characterization of the slowest decrease of the mutual information with the distance to $\Pi_{\mathcal{A}}$ is determined on small neighborhoods of $\Pi_{\mathcal{A}}$. Corresponding results for classical-quantum channels are established under separable output Hilbert space assumption for the quadratic bound and under finite-dimensional output Hilbert space assumption for the exact characterization. Implications of these observations for the channel coding problem and applications of the proof techniques to related problems are discussed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.