Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete Weber inequalities and related Maxwell compactness for hybrid spaces over polyhedral partitions of domains with general topology (2304.14041v2)

Published 27 Apr 2023 in math.NA and cs.NA

Abstract: We prove discrete versions of the first and second Weber inequalities on $\boldsymbol{H}(\mathbf{curl})\cap\boldsymbol{H}(\mathrm{div}{\eta})$-like hybrid spaces spanned by polynomials attached to the faces and to the cells of a polyhedral mesh. The proven hybrid Weber inequalities are optimal in the sense that (i) they are formulated in terms of $\boldsymbol{H}(\mathbf{curl})$- and $\boldsymbol{H}(\mathrm{div}{\eta})$-like hybrid semi-norms designed so as to embed optimally (polynomially) consistent face penalty terms, and (ii) they are valid for face polynomials in the smallest possible stability-compatible spaces. Our results are valid on domains with general, possibly non-trivial topology. In a second part we also prove, within a general topological setting, related discrete Maxwell compactness properties.

Summary

We haven't generated a summary for this paper yet.