Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deligne tensor products of categories of modules for vertex operator algebras (2304.14023v1)

Published 27 Apr 2023 in math.QA, math-ph, math.CT, math.MP, and math.RT

Abstract: We show that if $\mathcal{U}$ and $\mathcal{V}$ are locally finite abelian categories of modules for vertex operator algebras $U$ and $V$, respectively, then the Deligne tensor product of $\mathcal{U}$ and $\mathcal{V}$ can be realized as a certain category $\mathcal{D}(\mathcal{U},\mathcal{V})$ of modules for the tensor product vertex operator algebra $U\otimes V$. We also show that if $\mathcal{U}$ and $\mathcal{V}$ admit the braided tensor category structure of Huang-Lepowsky-Zhang, then $\mathcal{D}(\mathcal{U},\mathcal{V})$ does as well under mild additional conditions, and that this braided tensor structure is equivalent to the natural braided tensor structure on a Deligne tensor product category. These results hold in particular when $\mathcal{U}$ and $\mathcal{V}$ are the categories of $C_1$-cofinite $U$- and $V$-modules, if these categories are closed under contragredients, in which case we show that $\mathcal{D}(\mathcal{U},\mathcal{V})$ is the category of $C_1$-cofinite $U\otimes V$-modules. If $U$ and $V$ are $\mathbb{N}$-graded and $C_2$-cofinite, then we may take $\mathcal{U}$ and $\mathcal{V}$ to be the categories of all grading-restricted generalized $U$- and $V$-modules, respectively. Thus as an application, if the tensor categories of all modules for two $C_2$-cofinite vertex operator algebras are rigid, then so is the tensor category of all modules for the tensor product vertex operator algebra. We use this to prove that the representation categories of the even subalgebras of the symplectic fermion vertex operator superalgebras are non-semisimple modular tensor categories.

Summary

We haven't generated a summary for this paper yet.