Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A mean-field games laboratory for generative modeling (2304.13534v5)

Published 26 Apr 2023 in stat.ML and cs.LG

Abstract: We demonstrate the versatility of mean-field games (MFGs) as a mathematical framework for explaining, enhancing, and designing generative models. In generative flows, a Lagrangian formulation is used where each particle (generated sample) aims to minimize a loss function over its simulated path. The loss, however, is dependent on the paths of other particles, which leads to a competition among the population of particles. The asymptotic behavior of this competition yields a mean-field game. We establish connections between MFGs and major classes of generative flows and diffusions including continuous-time normalizing flows, score-based generative models (SGM), and Wasserstein gradient flows. Furthermore, we study the mathematical properties of each generative model by studying their associated MFG's optimality condition, which is a set of coupled forward-backward nonlinear partial differential equations. The mathematical structure described by the MFG optimality conditions identifies the inductive biases of generative flows. We investigate the well-posedness and structure of normalizing flows, unravel the mathematical structure of SGMs, and derive a MFG formulation of Wasserstein gradient flows. From an algorithmic perspective, the optimality conditions yields Hamilton-Jacobi-BeLLMan (HJB) regularizers for enhanced training of generative models. In particular, we propose and demonstrate an HJB-regularized SGM with improved performance over standard SGMs. We present this framework as an MFG laboratory which serves as a platform for revealing new avenues of experimentation and invention of generative models.

Citations (15)

Summary

We haven't generated a summary for this paper yet.