Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algebraic quantum groups III. The modular and the analytic structure (2304.13523v1)

Published 26 Apr 2023 in math.QA and math.RA

Abstract: This is the last part of a series of three papers on the subject. In the first part we have considered the duality of algebraic quantum groups. In that paper, we use the term algebraic quantum group for a regular multiplier Hopf algebra with integrals. We treat the duality as studied in that theory. In the second part we have considered the duality for multiplier Hopf $*$-algebras with positive integrals. The main purpose of that paper is to explain how it gives rise to a locally compact quantum group in the sense of Kustermans and Vaes. In a preliminary section of the second part we have mentioned the analytic structure of such a $*$-algebraic quantum group. We have not gone into the details, except for that part needed to obtain that the scaling constant is trivial and for proving that the composition of a positive left integral with the antipode gives a right integral that is again positive. Also the construction of the square root. of the modular element is discussed and used to obtain the two Haar weights on the associated locally compact quantum group. In this paper we treat the analytic structure of the $*$-algebraic quantum group in detail. The analytic structure is intimately related with the modular structure. We obtain a collection of interesting formulas, relating the two structures. Further we compare these results with formulas obtained in the framework of general locally compact quantum groups. As for the first two papers in this series, also here no new results are obtained. On the other hand the approach is different, more direct and instructive. It might help the reader for understanding the more general theory of locally compact quantum groups.

Summary

We haven't generated a summary for this paper yet.