Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large deviations of the largest eigenvalue of supercritical sparse Wigner matrices (2304.13364v1)

Published 26 Apr 2023 in math.PR, math-ph, math.CO, and math.MP

Abstract: Consider a random symmetric matrix with i.i.d.~entries on and above its diagonal that are products of Bernoulli random variables and random variables with sub-Gaussian tails. Such a matrix will be called a sparse Wigner matrix and can be viewed as the adjacency matrix of a random network with sub-Gaussian weights on its edges. In the regime where the mean degree is at least logarithmic in dimension, the edge eigenvalues of an appropriately scaled sparse Wigner matrix stick to the edges of the support of the semicircle law. We show that in this sparsity regime, the large deviations upper tail event of the largest eigenvalue of a sparse Wigner matrix with sub-Gaussian entries is generated by either the emergence of a high degree vertex with a large vertex weight or that of a clique with large edge weights. Interestingly, the rate function obtained is discontinuous at the typical value of the largest eigenvalue, which accounts for the fact that its large deviation behaviour is generated by finite rank perturbations. This complements the results of Ganguly and Nam, and Ganguly, Hiesmayr, and Nam which considered the case where the mean degree is constant.

Summary

We haven't generated a summary for this paper yet.