Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Membrane Potential Distribution Adjustment and Parametric Surrogate Gradient in Spiking Neural Networks (2304.13289v1)

Published 26 Apr 2023 in cs.LG and cs.NE

Abstract: As an emerging network model, spiking neural networks (SNNs) have aroused significant research attentions in recent years. However, the energy-efficient binary spikes do not augur well with gradient descent-based training approaches. Surrogate gradient (SG) strategy is investigated and applied to circumvent this issue and train SNNs from scratch. Due to the lack of well-recognized SG selection rule, most SGs are chosen intuitively. We propose the parametric surrogate gradient (PSG) method to iteratively update SG and eventually determine an optimal surrogate gradient parameter, which calibrates the shape of candidate SGs. In SNNs, neural potential distribution tends to deviate unpredictably due to quantization error. We evaluate such potential shift and propose methodology for potential distribution adjustment (PDA) to minimize the loss of undesired pre-activations. Experimental results demonstrate that the proposed methods can be readily integrated with backpropagation through time (BPTT) algorithm and help modulated SNNs to achieve state-of-the-art performance on both static and dynamic dataset with fewer timesteps.

Summary

We haven't generated a summary for this paper yet.