Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical Approximation of Andrews Plots with Optimal Spatial-Spectral Smoothing (2304.13239v1)

Published 26 Apr 2023 in math.NA, cs.HC, cs.NA, and stat.ML

Abstract: Andrews plots provide aesthetically pleasant visualizations of high-dimensional datasets. This work proves that Andrews plots (when defined in terms of the principal component scores of a dataset) are optimally smooth'' on average, and solve an infinite-dimensional quadratic minimization program over the set of linear isometries from the Euclidean data space to $L^2([0,1])$. By building technical machinery that characterizes the solutions to general infinite-dimensional quadratic minimization programs over linear isometries, we further show that the solution set is (in the generic case) a manifold. To avoid the ambiguities presented by this manifold of solutions, we addspectral smoothing'' terms to the infinite-dimensional optimization program to induce Andrews plots with optimal spatial-spectral smoothing. We characterize the (generic) set of solutions to this program and prove that the resulting plots admit efficient numerical approximations. These spatial-spectral smooth Andrews plots tend to avoid some ``visual clutter'' that arises due to the oscillation of trigonometric polynomials.

Summary

We haven't generated a summary for this paper yet.