Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Positive definite nonparametric regression using an evolutionary algorithm with application to covariance function estimation (2304.13168v1)

Published 25 Apr 2023 in stat.ME and cs.NE

Abstract: We propose a novel nonparametric regression framework subject to the positive definiteness constraint. It offers a highly modular approach for estimating covariance functions of stationary processes. Our method can impose positive definiteness, as well as isotropy and monotonicity, on the estimators, and its hyperparameters can be decided using cross validation. We define our estimators by taking integral transforms of kernel-based distribution surrogates. We then use the iterated density estimation evolutionary algorithm, a variant of estimation of distribution algorithms, to fit the estimators. We also extend our method to estimate covariance functions for point-referenced data. Compared to alternative approaches, our method provides more reliable estimates for long-range dependence. Several numerical studies are performed to demonstrate the efficacy and performance of our method. Also, we illustrate our method using precipitation data from the Spatial Interpolation Comparison 97 project.

Summary

We haven't generated a summary for this paper yet.