Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time-Selective RNN for Device-Free Multi-Room Human Presence Detection Using WiFi CSI (2304.13107v2)

Published 25 Apr 2023 in cs.AI and cs.LG

Abstract: Device-free human presence detection is a crucial technology for various applications, including home automation, security, and healthcare. While camera-based systems have traditionally been used for this purpose, they raise privacy concerns. To address this issue, recent research has explored the use of wireless channel state information (CSI) extracted from commercial WiFi access points (APs) to provide detailed channel characteristics. In this paper, we propose a device-free human presence detection system for multi-room scenarios using a time-selective conditional dual feature extract recurrent network (TCD-FERN). Our system is designed to capture significant time features on current human features using a dynamic and static data preprocessing technique. We extract both moving and spatial features of people and differentiate between line-of-sight (LoS) and non-line-of-sight (NLoS) cases. Subcarrier fusion is carried out in order to provide more objective variation of each sample while reducing the computational complexity. A voting scheme is further adopted to mitigate the feature attenuation problem caused by room partitions, with around 3% improvement of human presence detection accuracy. Experimental results have revealed the significant improvement of leveraging subcarrier fusion, dual-feature recurrent network, time selection and condition mechanisms. Compared to the existing works in open literature, our proposed TCD-FERN system can achieve above 97% of human presence detection accuracy for multi-room scenarios with the adoption of fewer WiFi APs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. Y. Yu, R. Chen, L. Chen, X. Zheng, D. Wu, W. Li, and Y. Wu, “A novel 3-d indoor localization algorithm based on BLE and multiple sensors,” IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9359–9372, 2021.
  2. S. Yang, J. Liu, X. Gong, G. Huang, and Y. Bai, “A robust heading estimation solution for smartphone multisensor-integrated indoor positioning,” IEEE Internet of Things Journal, vol. 8, no. 23, pp. 17 186–17 198, 2021.
  3. H. Yetgin, K. T. K. Cheung, M. El-Hajjar, and L. H. Hanzo, “A survey of network lifetime maximization techniques in wireless sensor networks,” IEEE Communications Surveys Tutorials, vol. 19, no. 2, pp. 828–854, 2017.
  4. R. Zhang, X. Jing, S. Wu, C. Jiang, J. Mu, and F. R. Yu, “Device-free wireless sensing for human detection: The deep learning perspective,” IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2517–2539, 2021.
  5. X. Ma, H. Wang, B. Xue, M. Zhou, B. Ji, and Y. Li, “Depth-based human fall detection via shape features and improved extreme learning machine,” IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 6, pp. 1915–1922, 2014.
  6. Y. Zhao, J. Xu, J. Wu, J. Hao, and H. Qian, “Enhancing camera-based multimodal indoor localization with device-free movement measurement using WiFi,” IEEE Internet of Things Journal, vol. 7, no. 2, pp. 1024–1038, 2020.
  7. B. Wang, H. Zhang, and Y.-X. Guo, “Radar-based soft fall detection using pattern contour vector,” IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2519–2527, 2023.
  8. H.-C. Tsai, C.-J. Chiu, P.-H. Tseng, and K.-T. Feng, “Refined autoencoder-based CSI hidden feature extraction for indoor spot localization,” in Proc. IEEE Vehicular Technology Conference (VTC-Fall), 2018, pp. 1–5.
  9. Y.-M. Huang, A.-H. Hsiao, C.-J. Chiu, K.-T. Feng, and P.-H. Tseng, “Device-free multiple presence detection using CSI with machine learning methods,” in Proc. IEEE Vehicular Technology Conference (VTC-Fall), 2019, pp. 1–5.
  10. Y. Wang, S. Yang, F. Li, Y. Wu, and Y. Wang, “FallViewer: A fine-grained indoor fall detection system with ubiquitous wi-fi devices,” IEEE Internet of Things Journal, vol. 8, no. 15, pp. 12 455–12 466, 2021.
  11. Y. Yu, R. Chen, L. Chen, S. Xu, W. Li, Y. Wu, and H. Zhou, “Precise 3-d indoor localization based on Wi-Fi FTM and built-in sensors,” IEEE Internet of Things Journal, vol. 7, no. 12, pp. 11 753–11 765, 2020.
  12. Y. He, Y. Chen, Y. Hu, and B. Zeng, “WiFi vision: Sensing, recognition, and detection with commodity MIMO-OFDM WiFi,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8296–8317, 2020.
  13. L.-H. Shen, K.-T. Feng, and L. Hanzo, “Five facets of 6G: Research challenges and opportunities,” ACM Computing Surveys, vol. 55, no. 11, pp. 1–39, 2023.
  14. D. Zhang and L. M. Ni, “Dynamic clustering for tracking multiple transceiver-free objects,” in Proc. IEEE International Conference on Pervasive Computing and Communications (PerCom), 2009, pp. 1–8.
  15. P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based user location and tracking system,” in Proc. IEEE International Conference on Computer Communications (INFOCOM), vol. 2, 2000, pp. 775–784.
  16. X. Gong, J. Liu, S. Yang, F. Gu, G. Huang, and Y. Bai, “An enhanced indoor positioning solution using dynamic radio fingerprinting spatial context recognition,” IEEE Internet of Things Journal, vol. 10, no. 2, pp. 1297–1309, 2023.
  17. Y. Gu, F. Ren, and J. Li, “PAWS: Passive human activity recognition based on WiFi ambient signals,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 796–805, 2015.
  18. H. Abdelnasser, M. Youssef, and K. A. Harras, “WiGest: A ubiquitous WiFi-based gesture recognition system,” in Proc. IEEE International Conference on Computer Communications (INFOCOM), 2015, pp. 1472–1480.
  19. J. Xiao, K. Wu, Y. Yi, and L. M. Ni, “FIFS: Fine-grained indoor fingerprinting system,” in Proc. IEEE International Conference on Computer Communications and Networks (ICCCN), 2012, pp. 1–7.
  20. K. Wu, J. Xiao, Y. Yi, M. Gao, and L. M. Ni, “FILA: Fine-grained indoor localization,” in Proc. IEEE International Conference on Computer Communications (INFOCOM), 2012, pp. 2210–2218.
  21. C. Han, K. Wu, Y. Wang, and L. M. Ni, “WiFall: Device-free fall detection by wireless networks,” in Proc. IEEE International Conference on Computer Communications (INFOCOM), 2014, pp. 271–279.
  22. Y. Wang, K. Wu, and L. M. Ni, “WiFall: Device-free fall detection by wireless networks,” IEEE Transactions on Mobile Computing, vol. 16, no. 2, pp. 581–594, 2017.
  23. W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Device-free human activity recognition using commercial WiFi devices,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1118–1131, 2017.
  24. J. Yang, H. Zou, H. Jiang, and L. Xie, “Device-free occupant activity sensing using WiFi-enabled IoT devices for smart homes,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3991–4002, 2018.
  25. S. Tan and J. Yang, “WiFinger: Leveraging commodity WiFi for fine-grained finger gesture recognition,” in Proc. ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2016, p. 201–210.
  26. J. Yang, H. Zou, Y. Zhou, and L. Xie, “Learning gestures from WiFi: A siamese recurrent convolutional architecture,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 763–10 772, 2019.
  27. D. Zhang, Y. Hu, Y. Chen, and B. Zeng, “BreathTrack: Tracking indoor human breath status via commodity WiFi,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3899–3911, 2019.
  28. F. Wang, F. Zhang, C. Wu, B. Wang, and K. J. R. Liu, “Respiration tracking for people counting and recognition,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5233–5245, 2020.
  29. H. Zou, Y. Zhou, J. Yang, W. Gu, L. Xie, and C. Spanos, “FreeCount: Device-free crowd counting with commodity WiFi,” in Proc. IEEE Global Communications Conference (GLOBECOM), 2017, pp. 1–6.
  30. Z. Tian, Y. Li, M. Zhou, and Z. Li, “WiFi-based adaptive indoor passive intrusion detection,” in Proc. IEEE International Conference on Digital Signal Processing (DSP), 2018, pp. 1–5.
  31. J. E. Kim, J. H. Choi, and K. T. Kim, “Robust detection of presence of individuals in an indoor environment using IR-UWB radar,” IEEE Access, vol. 8, pp. 108 133–108 147, 2020.
  32. R. Zhou, X. Lu, P. Zhao, and J. Chen, “Device-free presence detection and localization with SVM and CSI fingerprinting,” IEEE Sensors Journal, vol. 17, no. 23, pp. 7990–7999, 2017.
  33. X. Zeng, B. Wang, C. Wu, S. D. Regani, and K. J. R. Liu, “WiCPD: Wireless child presence detection system for smart cars,” IEEE Internet of Things Journal, vol. 9, no. 24, pp. 24 866–24 881, 2022.
  34. C.-C. Hsieh, A.-H. Hsiao, C.-J. Chiu, and K.-T. Feng, “CSI ratio with coloring-assisted learning for NLoS motionless human presence detection,” in Proc. IEEE Vehicular Technology Conference (VTC-Spring), 2022, pp. 1–5.
  35. F.-Y. Chu, C.-J. Chiu, A.-H. Hsiao, K.-T. Feng, and P.-H. Tseng, “WiFi CSI-based device-free multi-room presence detection using conditional recurrent network,” in Proc. IEEE Vehicular Technology Conference (VTC-Spring), 2021, pp. 1–5.
  36. K.-I. Lu, C.-J. Chiu, K.-T. Feng, and P.-H. Tseng, “Device-free CSI-based wireless localization for high precision drone landing applications,” in Proc. IEEE Vehicular Technology Conference (VTC-Fall), 2019, pp. 1–5.
  37. S. Di Domenico, M. De Sanctis, E. Cianca, and M. Ruggieri, “WiFi-based through-the-wall presence detection of stationary and moving humans analyzing the doppler spectrum,” IEEE Aerospace and Electronic Systems Magazine, vol. 33, no. 5-6, pp. 14–19, 2018.
  38. J. Wilson and N. Patwari, “See-through walls: Motion tracking using variance-based radio tomography networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 5, pp. 612–621, 2011.
  39. S. D. Regani, B. Wang, Y. Hu, and K. J. R. Liu, “GWrite: Enabling through-the-wall gesture writing recognition using WiFi,” IEEE Internet of Things Journal, vol. 10, no. 7, pp. 5977–5991, 2023.
  40. B. Korany, H. Cai, and Y. Mostofi, “Multiple people identification through walls using off-the-shelf WiFi,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6963–6974, 2021.
  41. K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.
  42. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
  43. L.-H. Shen and K.-T. Feng, “Joint beam and subband resource allocation with QoS requirement for millimeter wave MIMO systems,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), 2017, pp. 1–6.
  44. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  45. L.-H. Shen, C.-C. Hsieh, A.-H. Hsiao, and K.-T. Feng, “CRONOS: Colorization and contrastive learning for device-free NLoS human presence detection using Wi-Fi CSI,” IEEE Internet of Things Journal, pp. 1–1, 2023.
  46. D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.
  47. M. T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural machine translation,” arXiv preprint arXiv:1508.04025, 2015.
  48. S.-H. Chung, L.-H. Shen, and K.-T. Feng, “Long-/short-term reinforcement learning for multi-aps channel allocation in IEEE 802.11ax WLANs,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), 2023, pp. 1–6.
  49. H. Zhu, F. Xiao, L. Sun, R. Wang, and P. Yang, “R-TTWD: Robust device-free through-the-wall detection of moving human with WiFi,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1090–1103, 2017.
  50. J. Ding and Y. Wang, “WiFi CSI-based human activity recognition using deep recurrent neural network,” IEEE Access, vol. 7, pp. 174 257–174 269, 2019.
  51. B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” in Proceedings the Fifth Annual Workshop on Computational Learning Theory, 1992, pp. 144–152.
  52. W.-Y. Chung, L.-H. Shen, K.-T. Feng, Y.-C. Lin, S.-C. Lin, and S.-F. Chang, “WiRiS: Transformer for RIS-assisted device-free sensing for joint people counting and localization using Wi-Fi CSI,” in Proc. IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2023, pp. 1–6.
Citations (5)

Summary

We haven't generated a summary for this paper yet.