Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation (2304.13016v2)

Published 25 Apr 2023 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: We study subsampling-based ridge ensembles in the proportional asymptotics regime, where the feature size grows proportionally with the sample size such that their ratio converges to a constant. By analyzing the squared prediction risk of ridge ensembles as a function of the explicit penalty $\lambda$ and the limiting subsample aspect ratio $\phi_s$ (the ratio of the feature size to the subsample size), we characterize contours in the $(\lambda, \phi_s)$-plane at any achievable risk. As a consequence, we prove that the risk of the optimal full ridgeless ensemble (fitted on all possible subsamples) matches that of the optimal ridge predictor. In addition, we prove strong uniform consistency of generalized cross-validation (GCV) over the subsample sizes for estimating the prediction risk of ridge ensembles. This allows for GCV-based tuning of full ridgeless ensembles without sample splitting and yields a predictor whose risk matches optimal ridge risk.

Citations (10)

Summary

We haven't generated a summary for this paper yet.