Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equidistribution of Solutions of Ternary Quadratic Congruences Modulo Prime Powers (2304.12787v1)

Published 25 Apr 2023 in math.NT

Abstract: Let $p$ be a fixed odd prime and $Q(x,y,z)=ax2+bxy+cy2+dxz+eyz+fz2$ be a fixed quadratic form in $\mathbb{Z}[x,y,z]$ which is non-degenerate in $\mathbb{F}_p[x,y,z]$ and $(a(4ac-b2),p)=1.$ Let $(x_0,y_0,z_0)$ be a fixed point in $\mathbb{Z}3$. We study the behavior of solutions $(x,y,z)$ of congruences of the form $Q(x,y,z)\equiv0\bmod{q}$ with $q=pn,$ where max${|x-x_0|,|y-y_0|,|z-z_0|}\leq N$ and $(z,p)=1.$ In fact, we consider a smooth version of this problem and establish an asymptotic formula (thus the existence of such solutions) when $n\rightarrow\infty$, under the condition $N\geq q{\frac{1}{2}+\varepsilon}$.

Summary

We haven't generated a summary for this paper yet.