Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Audio-Tagging Assisted Sound Event Detection using Weakified Strong Labels and Frequency Dynamic Convolutions (2304.12688v1)

Published 25 Apr 2023 in eess.AS

Abstract: Jointly learning from a small labeled set and a larger unlabeled set is an active research topic under semi-supervised learning (SSL). In this paper, we propose a novel SSL method based on a two-stage framework for leveraging a large unlabeled in-domain set. Stage-1 of our proposed framework focuses on audio-tagging (AT), which assists the sound event detection (SED) system in Stage-2. The AT system is trained utilizing a strongly labeled set converted into weak predictions referred to as weakified set, a weakly labeled set, and an unlabeled set. This AT system then infers on the unlabeled set to generate reliable pseudo-weak labels, which are used with the strongly and weakly labeled set to train a frequency dynamic convolutional recurrent neural network-based SED system at Stage-2 in a supervised manner. Our system outperforms the baseline by 45.5% in terms of polyphonic sound detection score on the DESED real validation set.

Citations (5)

Summary

We haven't generated a summary for this paper yet.