Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LMSFC: A Novel Multidimensional Index based on Learned Monotonic Space Filling Curves (2304.12635v4)

Published 25 Apr 2023 in cs.DB

Abstract: The recently proposed learned indexes have attracted much attention as they can adapt to the actual data and query distributions to attain better search efficiency. Based on this technique, several existing works build up indexes for multi-dimensional data and achieve improved query performance. A common paradigm of these works is to (i) map multi-dimensional data points to a one-dimensional space using a fixed space-filling curve (SFC) or its variant and (ii) then apply the learned indexing techniques. We notice that the first step typically uses a fixed SFC method, such as row-major order and z-order. It definitely limits the potential of learned multi-dimensional indexes to adapt variable data distributions via different query workloads. In this paper, we propose a novel idea of learning a space-filling curve that is carefully designed and actively optimized for efficient query processing. We also identify innovative offline and online optimization opportunities common to SFC-based learned indexes and offer optimal and/or heuristic solutions. Experimental results demonstrate that our proposed method, LMSFC, outperforms state-of-the-art non-learned or learned methods across three commonly used real-world datasets and diverse experimental settings.

Citations (7)

Summary

We haven't generated a summary for this paper yet.