Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix-free GPU-accelerated saddle-point solvers for high-order problems in $H(\mathrm{div})$ (2304.12387v1)

Published 24 Apr 2023 in math.NA and cs.NA

Abstract: This work describes the development of matrix-free GPU-accelerated solvers for high-order finite element problems in $H(\mathrm{div})$. The solvers are applicable to grad-div and Darcy problems in saddle-point formulation, and have applications in radiation diffusion and porous media flow problems, among others. Using the interpolation-histopolation basis (cf. SIAM J. Sci. Comput., 45 (2023), A675-A702, arXiv:2203.02465), efficient matrix-free preconditioners can be constructed for the $(1,1)$-block and Schur complement of the block system. With these approximations, block-preconditioned MINRES converges in a number of iterations that is independent of the mesh size and polynomial degree. The approximate Schur complement takes the form of an M-matrix graph Laplacian, and therefore can be well-preconditioned by highly scalable algebraic multigrid methods. High-performance GPU-accelerated algorithms for all components of the solution algorithm are developed, discussed, and benchmarked. Numerical results are presented on a number of challenging test cases, including the "crooked pipe" grad-div problem, the SPE10 reservoir modeling benchmark problem, and a nonlinear radiation diffusion test case.

Citations (1)

Summary

We haven't generated a summary for this paper yet.