Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Halftoning via Deep Reinforcement Learning (2304.12152v2)

Published 24 Apr 2023 in cs.CV and cs.GR

Abstract: Halftoning aims to reproduce a continuous-tone image with pixels whose intensities are constrained to two discrete levels. This technique has been deployed on every printer, and the majority of them adopt fast methods (e.g., ordered dithering, error diffusion) that fail to render structural details, which determine halftone's quality. Other prior methods of pursuing visual pleasure by searching for the optimal halftone solution, on the contrary, suffer from their high computational cost. In this paper, we propose a fast and structure-aware halftoning method via a data-driven approach. Specifically, we formulate halftoning as a reinforcement learning problem, in which each binary pixel's value is regarded as an action chosen by a virtual agent with a shared fully convolutional neural network (CNN) policy. In the offline phase, an effective gradient estimator is utilized to train the agents in producing high-quality halftones in one action step. Then, halftones can be generated online by one fast CNN inference. Besides, we propose a novel anisotropy suppressing loss function, which brings the desirable blue-noise property. Finally, we find that optimizing SSIM could result in holes in flat areas, which can be avoided by weighting the metric with the contone's contrast map. Experiments show that our framework can effectively train a light-weight CNN, which is 15x faster than previous structure-aware methods, to generate blue-noise halftones with satisfactory visual quality. We also present a prototype of deep multitoning to demonstrate the extensibility of our method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. R. A. Ulichney, “Dithering with blue noise,” Proc. IEEE, vol. 76, no. 1, pp. 56–79, 1988.
  2. B. E. Bayer, “An optimum method for two-level rendition of continuous tone pictures,” in Proc. IEEE Int. Communication Conf., 1973, pp. 2611–2615.
  3. J. Sullivan, L. Ray, and R. Miller, “Design of minimum visual modulation halftone patterns,” IEEE Trans. Man-Mach. Syst., vol. 21, no. 1, pp. 33–38, 1991.
  4. R. A. Ulichney, “Void-and-cluster method for dither array generation,” in Proc. SPIE, 1993, pp. 332–343.
  5. J. P. Allebach and Q. Lin, “Fm screen design using dbs algorithm,” in Proc. IEEE Int. Conf. Image Process., vol. 1, 1996, pp. 549–552.
  6. R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial grayscale,” in Proc. Soc. Inf. Disp., vol. 17, 1976, pp. 75–77.
  7. V. Ostromoukhov, “A simple and efficient error-diffusion algorithm,” in Proc. SIGGRAPH, 2001, pp. 567–572.
  8. P. Li and J. P. Allebach, “Tone-dependent error diffusion,” IEEE Trans. Image Process., vol. 13, no. 2, pp. 201–215, 2004.
  9. J. Chang, B. Alain, and V. Ostromoukhov, “Structure-aware error diffusion,” ACM Trans. Graph., vol. 28, no. 5, pp. 1–8, 2009.
  10. H. Li and D. Mould, “Contrast-aware halftoning,” Comput. Graph. Forum, vol. 29, no. 2, pp. 273–280, 2010.
  11. Y.-H. Fung and Y.-H. Chan, “Tone-dependent error diffusion based on an updated blue-noise model,” J. Electron. Imag., vol. 25, no. 1, p. 013013, 2016.
  12. X. Y. Hu, “Simple gradient-based error-diffusion method,” J. Electron. Imag., vol. 25, no. 4, p. 043029, 2016.
  13. Y. Mao, L. Abello, U. Sarkar, R. A. Ulichney, and J. P. Allebach, “4-row serpentine tone dependent fast error diffusion,” in Proc. IEEE Int. Conf. Image Process., 2018, pp. 3973–3977.
  14. M. Analoui and J. P. Allebach, “Model-based halftoning using direct binary search,” in Proc. SPIE, vol. 1666, 1992, pp. 96–108.
  15. W.-M. Pang, Y. Qu, T.-T. Wong, D. Cohen-Or, and P.-A. Heng, “Structure-aware halftoning,” ACM Trans. Graph., vol. 27, no. 3, pp. 1–8, 2008.
  16. A. Chatterjee, B. Tudu, and K. C. Paul, “Towards optimized binary pattern generation for grayscale digital halftoning: A binary particle swarm optimization (bpso) approach,” J. Vis. Commun. Image Represent., vol. 23, no. 8, pp. 1245–1259, 2012.
  17. R. Näsänen, “Visibility of halftone dot textures,” IEEE Trans. Man-Mach. Syst., vol. SMC-14, no. 6, pp. 920–924, 1984.
  18. Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.
  19. T.-H. Kim and S. I. Park, “Deep context-aware descreening and rescreening of halftone images,” ACM Trans. Graph., vol. 37, no. 4, pp. 1–12, 2018.
  20. M. Xia and T.-T. Wong, “Deep inverse halftoning via progressively residual learning,” in Proc. Asian Conf. Comput. Vis., 2019, pp. 523–539.
  21. J.-M. Guo and S. Sankarasrinivasan, “H-gan: Deep learning model for halftoning and its reconstruction,” in Proc. IEEE Int. Conf. Consum. Electron., 2020, pp. 1–2.
  22. M. Xia, W. Hu, X. Liu, and T.-T. Wong, “Deep halftoning with reversible binary pattern,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 13 980–13 989.
  23. B. Choi and J. P. Allebach, “Mimicking dbs halftoning via a deep learning approach,” in Proc. Color Imag. XXVII, Displaying, Process., Hardcopy, Appl., Part IS&T Electron. Imag., 2022, pp. 158–1–158–7.
  24. Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through stochastic neurons for conditional computation,” 2013. [Online]. Available: https://arxiv.org/abs/1308.3432
  25. H. Jiang, D. Xiong, X. Jiang, A. Yin, L. Ding, and K. Huang, “Halftoning with multi-agent deep reinforcement learning,” in Proc. IEEE Int. Conf. Image Process., 2022, pp. 641–645.
  26. R. Furuta, N. Inoue, and T. Yamasaki, “Pixelrl: Fully convolutional network with reinforcement learning for image processing,” IEEE Trans. Multimedia, vol. 22, no. 7, pp. 1704–1719, 2020.
  27. J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-agent policy gradients,” in Proc. AAAI Conf. Artif. Intell., vol. 32, 2018, pp. 2974–2982.
  28. M. Titsias RC AUEB and M. Lázaro-Gredilla, “Local expectation gradients for black box variational inference,” in Proc. Adv. Neural Inf. Process. Syst., vol. 28, 2015, pp. 2638–2646.
  29. R. Dahl, M. Norouzi, and J. Shlens, “Pixel recursive super resolution,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 5449–5458.
  30. S. Menon, A. Damian, S. Hu, N. Ravi, and C. Rudin, “Pulse: Self-supervised photo upsampling via latent space exploration of generative models,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 2434–2442.
  31. X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least squares generative adversarial networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2017.
  32. I. Yoo, X. Luo, Y. Wang, F. Yang, and P. Milanfar, “Gifnets: Differentiable gif encoding framework,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020.
  33. Y. Hu, H. He, C. Xu, B. Wang, and S. Lin, “Exposure: A white-box photo post-processing framework,” ACM Trans. Graph., vol. 37, no. 2, may 2018.
  34. C. Wang, R. Zhang, S. Ravishankar, and B. Wen, “Repnp: Plug-and-play with deep reinforcement learning prior for robust image restoration,” in Proc. IEEE Int. Conf. Image Process., 2022, pp. 2886–2890.
  35. D. Li, H. Wu, J. Zhang, and K. Huang, “A2-rl: Aesthetics aware reinforcement learning for image cropping,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8193–8201.
  36. R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3, pp. 229–256, 1992.
  37. V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Proc. Int. Conf. Mach. Learn., vol. 48, 2016, pp. 1928–1937.
  38. S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning: a survey,” Artif. Intell. Rev., vol. 55, no. 2, pp. 895–943, 2022.
  39. S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo gradient estimation in machine learning,” J. Mach. Learn. Res., vol. 21, no. 132, pp. 1–62, 2020.
  40. S. H. Kim and J. P. Allebach, “Impact of hvs models on model-based halftoning,” IEEE Trans. Image Process., vol. 11, no. 3, pp. 258–269, 2002.
  41. M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results,” http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.
  42. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770–778.
  43. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. Learn. Represent., 2015.
  44. D. Lau and R. Ulichney, “Blue-noise halftoning for hexagonal grids,” IEEE Trans. Image Process., vol. 15, no. 5, pp. 1270–1284, 2006.
  45. Y.-H. Fung and Y.-H. Chan, “Tone-dependent noise model for high-quality halftones,” J. Electron. Imag., vol. 22, no. 2, p. 023004, 2013.
  46. P. Itoua, A. Beghdadi, and P. Viaris de lesegno, “Objective perceptual evaluation of halftoning using image quality metrics,” in Proc. Int. Conf. Inf. Sci. Signal Process. Appl., 2010, pp. 456–459.
  47. J.-R. Liao, “Theoretical bounds of direct binary search halftoning,” IEEE Trans. Image Process., vol. 24, no. 11, pp. 3478–3487, 2015.
  48. P. Yin, J. Lyu, S. Zhang, S. J. Osher, Y. Qi, and J. Xin, “Understanding straight-through estimator in training activation quantized neural nets,” in Proc. Int. Conf. Learn. Represent., 2019.
  49. E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution: Dataset and study,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2017, pp. 1122–1131.
  50. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in MICCAI, 2015, pp. 234–241.
  51. T. Frank, J. Liu, S. Gat, O. Haik, O. B. Mor, I. Roth, J. P. Allebach, and Y. Yitzhaky, “A machine learning approach to design of aperiodic, clustered-dot halftone screens via direct binary search,” IEEE Trans. Image Process., vol. 31, pp. 5498–5512, 2022.
  52. F. Baqai, J.-H. Lee, A. Agar, and J. P. Allebach, “Digital color halftoning,” IEEE Signal Process. Mag., vol. 22, no. 1, pp. 87–96, 2005.
  53. J. Bacca Rodriguez, G. R. Arce, and D. L. Lau, “Blue-noise multitone dithering,” IEEE Trans. Image Process., vol. 17, no. 8, pp. 1368–1382, 2008.
  54. S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients,” 2016. [Online]. Available: https://arxiv.org/abs/1606.06160
  55. D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd: Communication-efficient sgd via gradient quantization and encoding,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1709–1720.
  56. J.-M. Guo, J.-Y. Chang, Y.-F. Liu, G.-H. Lai, and J.-D. Lee, “Tone-replacement error diffusion for multitoning,” IEEE Trans. Image Process., vol. 24, no. 11, pp. 4312–4321, 2015.
  57. A. U. Agar and J. P. Allebach, “Model-based color halftoning using direct binary search,” IEEE Trans. Image Process., vol. 14, no. 12, pp. 1945–1959, 2005.
  58. W.-C. Kao and J.-L. Ho, “Fast video halftoning for electronic papers,” in Proc. IEEE Int. Conf. Consum. Electron. Taiwan, 2022, pp. 595–596.
  59. P. Goyal, M. Gupta, C. Staelin, M. Fischer, O. Shacham, and J. P. Allebach, “Clustered-dot halftoning with direct binary search,” IEEE Trans. Image Process., vol. 22, no. 2, pp. 473–487, 2013.
Citations (3)

Summary

We haven't generated a summary for this paper yet.