Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight One-Shot Analysis for Convex Splitting with Applications in Quantum Information Theory (2304.12055v2)

Published 24 Apr 2023 in quant-ph, cs.IT, math-ph, math.IT, and math.MP

Abstract: Convex splitting is a powerful technique in quantum information theory used in proving the achievability of numerous information-processing protocols such as quantum state redistribution and quantum network channel coding. In this work, we establish a one-shot error exponent and a one-shot strong converse for convex splitting with trace distance as an error criterion. Our results show that the derived error exponent (strong converse exponent) is positive if and only if the rate is in (outside) the achievable region. This leads to new one-shot exponent results in various tasks such as communication over quantum wiretap channels, secret key distillation, one-way quantum message compression, quantum measurement simulation, and quantum channel coding with side information at the transmitter. We also establish a near-optimal one-shot characterization of the sample complexity for convex splitting, which yields matched second-order asymptotics. This then leads to stronger one-shot analysis in many quantum information-theoretic tasks.

Citations (10)

Summary

We haven't generated a summary for this paper yet.