Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotics of large deviations of finite difference method for stochastic Cahn--Hilliard equation (2304.11916v1)

Published 24 Apr 2023 in math.NA, cs.NA, and math.PR

Abstract: In this work, we establish the Freidlin--Wentzell large deviations principle (LDP) of the stochastic Cahn--Hilliard equation with small noise, which implies the one-point LDP. Further, we give the one-point LDP of the spatial finite difference method (FDM) for the stochastic Cahn--Hilliard equation. Our main result is the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the $\Gamma$-convergence of objective functions, which relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-side Lipschitz, we use the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. This plays an important role in deriving the $\Gamma$-convergence of objective functions.

Summary

We haven't generated a summary for this paper yet.