2000 character limit reached
Patterson-Sullivan measures for transverse subgroups (2304.11515v3)
Published 23 Apr 2023 in math.GR and math.DS
Abstract: We study Patterson-Sullivan measures for a class of discrete subgroups of higher rank semisimple Lie groups, called transverse groups, whose limit set is well-defined and transverse in a partial flag variety. This class of groups includes both Anosov and relatively Anosov groups, as well as all discrete subgroups of rank one Lie groups. We prove an analogue of the Hopf-Tsuji-Sullivan dichotomy and then use this dichotomy to prove a variant of Burger's Manhattan curve theorem. We also use the Patterson-Sullivan measures to obtain conditions for when a subgroup has critical exponent strictly less than the original transverse group. These gap results are new even for Anosov groups.
- P. Albuquerque, “Patterson-Sullivan theory in higher rank symmetric spaces,” G.A.F.A. 9(1999), 1–28.
- Y. Benoist, “Propriétés asymptotiques des groupes linéaires,” G.A.F.A. 7(1997), 1–47.
- Y. Benoist, “Convexes divisibles I,” in Algebraic groups and arithmetic, Tata Inst. Fund. Res. Stud. Math. 17(2004), 339–374.
- P. Blayac, “Patterson-Sullivan densities in convex projective geometry,” preprint, arxiv:2106.08089.
- P. Blayac, “Topological mixing of the geodesic flow on convex projective manifolds,” Ann. Inst. Four., to appear, arxiv:2009.05035.
- P. Blayac and F. Zhu, “Ergodicity and equidistribution in Hilbert geometry,” J. Mod. Dyn. 19(2023), 879–945.
- H. Bray, “Ergodicity of Bowen-Margulis measure for the Benoist 3333-manifolds,” J. Mod. Dyn. 16(2020), 205–329.
- M. Bridgeman, R. Canary, F. Labourie and A. Sambarino, “The pressure metric for Anosov representations,” G.A.F.A. 25(2015), 1089–1179.
- R. Brooks, “The bottom of the spectrum of a Riemannian covering,” Crelle’s Journal 357(1985), 101–114.
- M. Burger, “Intersection, the Manhattan curve and Patterson-Sullivan theory in rank 2," I.M.R.N. 7(1993), 217–225.
- M. Burger, O. Landesberg, M. Lee and H. Oh, “The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups,” J. Mod. Dyn. 19(2023), 301–330.
- R. Canary, “On the Laplacian and the geometry of hyperbolic 3-manifolds,” J. Diff. Geom. 36(1992), 349–367.
- R. Canary, M. Lee, A. Sambarino and M. Stover, “Amalgam Anosov representations,” Geom. Top. 21(2017), 215–251.
- R. Canary, T. Zhang and A. Zimmer, “Entropy rigidity for cusped Hitchin representations,” preprint, arXiv:2201.04859.
- Y. Coudene, “On invariant distributions and mixing,” Erg. Thy. Dyn. Sys. 27(2007), 109–112.
- Y. Coudene, “The Hopf Argument,” J. Mod. Dyn. 1(2007), 147–153.
- R. Coulon, F. Dal’bo and A. Sambusetti, “Growth gap in hyperbolic groups and amenability,” G.A.F.A. 28(2018), 1260–1320 .
- R. Coulon, S. Dougall, B. Schapira and S. Tapie, “Twisted Patterson-Sullivan measures and applications to amenability and coverings,” Mem. A.M.S., to appear, arxiv:1809.10881.
- F. Dal’Bo and I. Kim, “A criterion of conjugacy for Zariski dense subgroups,” C. R. Math. 330(2000), 647–650.
- F. Dal’bo, J.-P. Otal, and M. Peigné, “Séries de Poincaré des groupes géométriquement finis,” Israel J. Math. 118(2000), 109–124.
- S. Dey and M. Kapovich, “Patterson-Sullivan theory for Anosov subgroups,” Trans. A.M.S. 375(2022), 8687–8737.
- F. Guéritaud, O. Guichard, F. Kassel and A. Wienhard, “Anosov representations and proper actions,” Geom. Top. 21(2017), 485–584.
- O. Glorieux and S. Tapie, “Critical exponents of normal subgroups in higher rank,” preprint, arXiv:2006.05730.
- O. Guichard and A. Wienhard, “Anosov representations: Domains of discontinuity and applications,” Invent. Math. 190(2012), 357–438.
- M. Islam and A. Zimmer, “A flat torus theorem for convex co-compact actions of projective linear groups," Jour. L.M.S. 103(2021), 470–489.
- M. Kapovich, B. Leeb and J. Porti, “Anosov subgroups: Dynamical and geometric characterizations,” Eur. Math. J. 3(2017), 808–898.
- S. Kochen and C. Stone, “A note on the Borel-Cantelli lemma,” Illinois J. Math. 8(1964), 248–251.
- F. Labourie, “Anosov flows, surface groups and curves in projective space,” Invent. Math. 165(2006), 51–114.
- F. Ledrappier, “Structure au bord des variétés à courbure négative,” in Séminaire de théorie spectrale et géométrie de Grenoble 13, 1994-1995, Université de Grenoble I, Institut Fourier, Saint-Martin-d’Héres, 1995, 97–122.
- M. Lee and H. Oh, “Invariant measures for horospherical actions and Anosov groups,” I.M.R.N. 19(2023), 16226–16295.
- M. Lee and H. Oh, “Dichotomy and measures on limit sets of Anosov groups,” I.M.R.N., to appear, arXiv:2203.06794.
- G. Link, “Ergodicity of generalised Patterson-Sullivan measures in higher rank symmetric spaces,” Math. Z. 254(2006), 611–625.
- L. Marquis, “Around groups in Hilbert geometry,” in Handbook of Hilbert Geometry, European Mathematical Society Publishing House, 2014, 207–261.
- S.J. Patterson, “The limit set of a Fuchsian group,” Acta Math. 136(1976), 241–273.
- R. Potrie and A. Sambarino, “Eigenvalues and entropy of a Hitchin representation,” Invent. Math. 209(2017), 885–925.
- J.F. Quint, “Mesures de Patterson-Sullivan en rang supérieur,” G.A.F.A. 12(2002), 776–809.
- T. Roblin, “Ergodicité et équidistribution en courbure négative,” Mem. Soc. Math. Fr. No. 95 (2003).
- A. Sambarino, “Quantitative properties of convex representations,” Comment. Math. Helv. 89(2014), 443–488.
- A. Sambarino, “The orbital counting problem for hyperconvex representations,” Ann. Inst. Fourier 65(2015), 1755–1797.
- A. Sambarino, “A report on an ergodic dichotomy,” Ergod. Theory Dyn. Syst. 44(2024), 236–289.
- D. Sullivan, “The density at infinity of a discrete group of hyperbolic motions,” Publ. I.H.E.S. 50(1979), 171–202.
- D. Sullivan, “The ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions,” in Riemann surfaces and related topics: proceedings of the 1978 Stony Brook conference, I. Kra and B. Maski, ed., Princeton University Press, 1981, 465–496.
- F. Zhu, “Ergodicity and equidistribution in strictly convex Hilbert geometry,” preprint, arXiv:2008.00328.