Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Boundary Trend Filtering (2304.11491v3)

Published 22 Apr 2023 in stat.ME

Abstract: Estimating boundary curves has many applications such as economics, climate science, and medicine. Bayesian trend filtering has been developed as one of locally adaptive smoothing methods to estimate the non-stationary trend of data. This paper develops a Bayesian trend filtering for estimating the boundary trend. To this end, the truncated multivariate normal working likelihood and global-local shrinkage priors based on the scale mixtures of normal distribution are introduced. In particular, well-known horseshoe prior for difference leads to locally adaptive shrinkage estimation for boundary trend. However, the full conditional distributions of the Gibbs sampler involve high-dimensional truncated multivariate normal distribution. To overcome the difficulty of sampling, an approximation of truncated multivariate normal distribution is employed. Using the approximation, the proposed models lead to an efficient Gibbs sampling algorithm via the P\'olya-Gamma data augmentation. The proposed method is also extended by considering a nearly isotonic constraint. The performance of the proposed method is illustrated through some numerical experiments and real data examples.

Summary

We haven't generated a summary for this paper yet.