Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyper-Laplacian Regularized Concept Factorization in Low-rank Tensor Space for Multi-view Clustering (2304.11435v2)

Published 22 Apr 2023 in cs.LG

Abstract: Tensor-oriented multi-view subspace clustering has achieved significant strides in assessing high-order correlations and improving clustering analysis of multi-view data. Nevertheless, most of existing investigations are typically hampered by the two flaws. First, self-representation based tensor subspace learning usually induces high time and space complexity, and is limited in perceiving nonlinear local structure in the embedding space. Second, the tensor singular value decomposition (t-SVD) model redistributes each singular value equally without considering the diverse importance among them. To well cope with the issues, we propose a hyper-Laplacian regularized concept factorization (HLRCF) in low-rank tensor space for multi-view clustering. Specifically, we adopt the concept factorization to explore the latent cluster-wise representation of each view. Further, the hypergraph Laplacian regularization endows the model with the capability of extracting the nonlinear local structures in the latent space. Considering that different tensor singular values associate structural information with unequal importance, we develop a self-weighted tensor Schatten p-norm to constrain the tensor comprised of all cluster-wise representations. Notably, the tensor with smaller size greatly decreases the time and space complexity in the low-rank optimization. Finally, experimental results on eight benchmark datasets exhibit that HLRCF outperforms other multi-view methods, showingcasing its superior performance.

Summary

We haven't generated a summary for this paper yet.