Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised Learning by View Synthesis (2304.11330v1)

Published 22 Apr 2023 in cs.CV

Abstract: We present view-synthesis autoencoders (VSA) in this paper, which is a self-supervised learning framework designed for vision transformers. Different from traditional 2D pretraining methods, VSA can be pre-trained with multi-view data. In each iteration, the input to VSA is one view (or multiple views) of a 3D object and the output is a synthesized image in another target pose. The decoder of VSA has several cross-attention blocks, which use the source view as value, source pose as key, and target pose as query. They achieve cross-attention to synthesize the target view. This simple approach realizes large-angle view synthesis and learns spatial invariant representation, where the latter is decent initialization for transformers on downstream tasks, such as 3D classification on ModelNet40, ShapeNet Core55, and ScanObjectNN. VSA outperforms existing methods significantly for linear probing and is competitive for fine-tuning. The code will be made publicly available.

Citations (1)

Summary

We haven't generated a summary for this paper yet.