Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Semi-Supervised Framework for Misinformation Detection (2304.11318v1)

Published 22 Apr 2023 in cs.AI

Abstract: The spread of misinformation in social media outlets has become a prevalent societal problem and is the cause of many kinds of social unrest. Curtailing its prevalence is of great importance and machine learning has shown significant promise. However, there are two main challenges when applying machine learning to this problem. First, while much too prevalent in one respect, misinformation, actually, represents only a minor proportion of all the postings seen on social media. Second, labeling the massive amount of data necessary to train a useful classifier becomes impractical. Considering these challenges, we propose a simple semi-supervised learning framework in order to deal with extreme class imbalances that has the advantage, over other approaches, of using actual rather than simulated data to inflate the minority class. We tested our framework on two sets of Covid-related Twitter data and obtained significant improvement in F1-measure on extremely imbalanced scenarios, as compared to simple classical and deep-learning data generation methods such as SMOTE, ADASYN, or GAN-based data generation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yueyang Liu (15 papers)
  2. Zois Boukouvalas (13 papers)
  3. Nathalie Japkowicz (19 papers)

Summary

We haven't generated a summary for this paper yet.