Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Profiling the news spreading barriers using news headlines (2304.11088v1)

Published 7 Apr 2023 in cs.CL, cs.AI, cs.LG, and cs.SI

Abstract: News headlines can be a good data source for detecting the news spreading barriers in news media, which may be useful in many real-world applications. In this paper, we utilize semantic knowledge through the inference-based model COMET and sentiments of news headlines for barrier classification. We consider five barriers including cultural, economic, political, linguistic, and geographical, and different types of news headlines including health, sports, science, recreation, games, homes, society, shopping, computers, and business. To that end, we collect and label the news headlines automatically for the barriers using the metadata of news publishers. Then, we utilize the extracted commonsense inferences and sentiments as features to detect the news spreading barriers. We compare our approach to the classical text classification methods, deep learning, and transformer-based methods. The results show that the proposed approach using inferences-based semantic knowledge and sentiment offers better performance than the usual (the average F1-score of the ten categories improves from 0.41, 0.39, 0.59, and 0.59 to 0.47, 0.55, 0.70, and 0.76 for the cultural, economic, political, and geographical respectively) for classifying the news-spreading barriers.

Summary

We haven't generated a summary for this paper yet.