Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prediction, Learning, Uniform Convergence, and Scale-sensitive Dimensions (2304.11059v2)

Published 21 Apr 2023 in cs.LG and stat.ML

Abstract: We present a new general-purpose algorithm for learning classes of $[0,1]$-valued functions in a generalization of the prediction model, and prove a general upper bound on the expected absolute error of this algorithm in terms of a scale-sensitive generalization of the Vapnik dimension proposed by Alon, Ben-David, Cesa-Bianchi and Haussler. We give lower bounds implying that our upper bounds cannot be improved by more than a constant factor in general. We apply this result, together with techniques due to Haussler and to Benedek and Itai, to obtain new upper bounds on packing numbers in terms of this scale-sensitive notion of dimension. Using a different technique, we obtain new bounds on packing numbers in terms of Kearns and Schapire's fat-shattering function. We show how to apply both packing bounds to obtain improved general bounds on the sample complexity of agnostic learning. For each $\epsilon > 0$, we establish weaker sufficient and stronger necessary conditions for a class of $[0,1]$-valued functions to be agnostically learnable to within $\epsilon$, and to be an $\epsilon$-uniform Glivenko-Cantelli class. This is a manuscript that was accepted by JCSS, together with a correction.

Citations (65)

Summary

We haven't generated a summary for this paper yet.