Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bilinear Strichartz estimates and almost sure global solutions for the nonlinear Schr{ö}dinger equation (2304.10979v1)

Published 21 Apr 2023 in math.AP and math.PR

Abstract: The purpose of this article is to construct global solutions, in a probabilistic sense, for the nonlinear Schr{\"o}dinger equation posed on $\mathbb{R}d$, in a supercritical regime. Firstly, we establish Bourgain type bilinear estimates for the harmonic oscillator which yields a gain of half a derivative in space for the local theory with randomised initial conditions, for the cubic equation in $\mathbb{R}3$. Then, thanks to the lens transform, we are able to obtain global in time solutions for the nonlinear Schr{\"o}dinger equation without harmonic potential. Secondly, we prove a Kato type smoothing estimate for the linear Schr{\"o}dinger equation with harmonic potential. This allows us to consider the Schr{\"o}dinger equation with a nonlinearity of odd degree in a supercritical regime, in any dimension $d\geq 2$.

Summary

We haven't generated a summary for this paper yet.